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Abstract

The trade-off between statistical and computational performances is key for modern
machine learning algorithms. On the one hand, the ultimate goal is to achieve the best
possible prediction error. On the other hand, time and memory requirements are unavoid-
able constraints in large scale problems. In this view, sketching and stochastic gradient
methods are among the most commonly used techniques to derive efficient large-scale
learning algorithms.

In this thesis, we consider learning binary classification problems in reproducing kernel
Hilbert space with the use of such techniques. Recent studies [43, 42] have shown that the
expected classification error converges exponentially fast with stochastic gradient descent
under the specific condition on label distribution, called strong low noise condition. Based
on these analyses, we give the following two contributions in this thesis.

Firstly, we extend these analyses to the general low noise condition and show that
the convergence of the expected classification error faster than the optimal rate of the
expected risk is achievable with SGD under such a condition.

Secondly, we consider solving the problem with the combination of sketching and
stochastic gradient descent, which yields much better computational efficiency. Analyzing
the error induced by the approximation of random features, which is the most popular
kernel sketching method, we show the exponential convergence of the expected classi-
fication error under the strong low noise condition is achieved even if random features
approximation is applied. Additionally, we demonstrate that the convergence rate does
not depend on the number of features and there is a significant computational benefit in
using random features.

These results suggest the theoretical validity of these commonly used approximation
methods in classification problems.

Keywords Binary classification, Stochastic gradient descent, Kernel method, Random
features, Low noise condition
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Chapter 1

Introduction

1.1 Motivation and Purpose
Classification is one of the main tasks in machine learning and has been frequently ap-
peared in practical problems such as image recognition. We consider an ordinal supervised
setting, where a set of input data and corresponding discrete labels is given as training
data and we aim to learn a classifier that can produce correct labels from unseen data.
The performance of a classifier is usually measured by the expected classification error
(also known as accuracy), which indicates the probability of misclassification by a learned
classifier. However, directly minimizing the expected classification error is known to in-
tractable due to its non-convexity [4]. Thus, convex surrogate losses (e.g., logistic loss
or hinge loss), which upper bounds classification errors, are usually used as an objec-
tive function and we try to minimize the expected classification error through minimizing
the expected risk, which is the expectation of such a tractable convex loss. This convex
approximation is theoretically justified by consistency property of loss functions [10, 66]
and these minimization problems are solved through general criteria of statistical learning
theory, such as empirical risk minimization (ERM).

On the other hand, the size of training datasets is becoming larger and larger in modern
machine learning and it is crucial to investigate computationally efficient methods to
optimize learning models with such large datasets. Stochastic gradient descent (SGD)
[49], that can learn from a single or a few passes over the data, is a workhorse of such a
large scale problems and is widely used in optimizations of practical models, such as deep
neural networks (DNN) and kernel methods, owing to its scalability, wide applicability,
simplicity of implementation, and superior performance. In the optimization literature, a
great deal of works has proposed more sophisticated variants of SGD using, for example,
variance reduction [30, 20, 41] or acceleration technique [2, 37].

From theoretical perspectives, the convergence rates of objective functions (risk) are
extensively studied. For example, optimal convergence rates is known as O(1/

√
n) and

O(1/n), where n denotes the sample size, for convex and strongly convex loss functions,
respectively [39, 1] and these rates are actually attained [38].

Going back to the origins of supervised classification problems, we are interested in not
the convergence rates of risk, but the one of classification error. It is known that the
excess classification error (equal to the expected classification error minus the minimal
expected classification error over all measurable functions) is upper bounded by a function
of the excess risk [10], but always such an upper bound results in a loose bound (e.g., no
difference or taking square roots from the excess risk). As a result, the convergence rates
of the expected classification errors are always equal or slower than O(1/

√
n) or O(1/n).

However, there are a variety of extra assumptions that could allow for faster rates.
In particular, such general relationships between excess loss and excess error has been
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refined by the use of the low noise condition [63, 10], which indicates how hard the
prediction problems are. Intuitively, if the label probability of an input point is equal over
all labels, it is difficult to decrease the classification error on that point and such cases
are considered as the problems with noisy label distribution. In contrast to this, if labels
are deterministic (i.e., labels have no noise), those are the easiest problems where we only
have to fit the model to the label distribution. The low noise condition quantifies the mass
of input points that have noisy label distribution and this condition can accelerate the
convergence rate of the excess classification errors faster than 1/n and even exponentially
fast, under the specific setting with empirical risk minimization (ERM) [6].

In this thesis, we investigate the effectiveness of SGD in binary classification problems,
where the label set is {−1, 1}, in terms of the convergence of the classification error. Re-
cent studies [43, 42] have shown that the exponential convergence property of SGD in
reproducing kernel Hilbert space (RKHS) under the strong low noise condition, which is
the strongest version of the low noise condition. Inspired by these analyses, we demon-
strate the following two contributions in this thesis.

First, we show that even under the general (not strong) low noise condition, the faster
convergence rate than O(1/n) can be achievable with SGD in Chapter 3. Since the
strong low noise condition is somewhat restrictive when considering real-world datasets,
our results give a better explanation of the practical success of SGD in classification
problems.

After that, in Chapter 4 we consider applying the approximation method of RKHS
called random features [47], which allow reducing data-dimensionality, hence memory re-
quirements, by random projections. Combining this with SGD, it yields much better
computational efficiency and this combination is widely used in practice. We analyze
the required approximated dimension to achieve the exponential convergence of the ex-
pected classification errors under the strong low noise condition and show that there is
the theoretically computational benefit to apply these approximation methods.

1.2 Organization of the Thesis
In Chapter 2, we introduce a problem setting of binary classification problems and details
of algorithm which is treated in this thesis and show some related known results on these
topics. Then we present the results on the convergence analysis of SGD under the general
low noise condition in Chapter 3. Next, we demonstrate the result about the validity of
random features under the strong low noise condition in Chapter 4. Finally, we conclude
the thesis and discuss future directions in Chapter 5. Missing proofs in Section 2-4 are
found in Appendix.

1.3 Notation
In general, for a probability measure µ on a topological space X , L2(dµ) denotes a space
of square-integrable functions with respect to µ, that is,

L2(dµ)
def
=
{
f : X → R

∣∣ ∥f∥L2(dµ) <∞
}
/N ,

∥f∥L2(dµ)
def
=

(∫
X
|f(x)|2dµ(x)

)1/2

,

where N denotes the kernel space of the norm:

N def
= {f : X → R | f(x) = 0 for µ-almost sure x ∈ X}.



1.3 Notation 3

We denote one with respect to the Lebesgue measure by L2(X ). In addition, L∞(dµ)
denotes a space of functions for which the essential supremum with respect to µ is bounded:

L∞(dµ)
def
=
{
f : X → R

∣∣ ∥f∥L∞(dµ) <∞
}
/N ,

∥f∥L∞(dµ)
def
= inf{C ≥ 0 | |f(x)| ≤ C for µ-almost sure x ∈ X}.

Similarly, we denote one with respect to the Lebesgue measure by L∞(X ).
Let V be a Hilbert space. We denote its inner product and the induced norm by ⟨·, ·⟩V
and ∥ · ∥V , respectively. For A : V → V , we denote an operator norm of A by ∥A∥op, that
is,

∥A∥op = sup
v∈V

∥Av∥V
∥v∥V

.

For a, b ∈ V , we define an outer product a⊗V b : V → V as follows:

(a⊗V b)v = ⟨b, v⟩V a, ∀v ∈ V.

Let W be a closed subspace of V , then a projection onto W is well-defined and we denote
its operator by PW . Then we have

v = PW v + PW⊥v, ∀v ∈ V.

Furthermore, we define a partial order ⪯ between linear, positive semi-definite and self-
adjoint operators A,B : V → V as follows:

A ⪯ B def⇐⇒ ⟨Av, v⟩V ≤ ⟨Bv, v⟩V , ∀v ∈ V.
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Chapter 2

Preliminary

2.1 Binary Classification Problem

2.1.1 Classification error and surrogate loss

In this section we introduce settings and basic properties of binary classification problem.
Let X and Y = {−1, 1} be a feature space and the set of binary labels, respectively; ρ
denotes a probability measure on X × Y, by ρX the marginal distribution on X, and by
ρ(·|X) the conditional distribution on Y , where (X,Y ) ∼ ρ. In the classification problem,
our final objective is to choose a discriminant function g : X → R such that the sign
of g(X) is an accurate prediction of Y . Therefore, we intend to minimize the expected
classification error R defined below:

R(g) = E(X,Y )∼ρ [I(sgn(g(X)), Y )] , (2.1)

where sgn(x) = 1 if x > 0 and −1 otherwise, and I represents 0-1 loss:

I(y, y′) =

{
1 (y ̸= y′)

0 (y = y′).

Infimum value of R amongst all measurable functions is denoted by R∗ and it is called
the Bayes classification error. By definition, any function g satisfying sgn(g(X)) =

1 0 1 2 3 4 5
x1

1

0

1

2

3

4

5

x2 g(x) = 0

Fig. 2.1: Example of binary classification problems.
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Fig. 2.2: 0-1 loss and surrogate loss functions [10].

sgn(2ρ(1|X) − 1) almost surely on the set {X | ρ(1|X) ̸= 1/2} has R(g) = R∗, and
such a function is called the Bayes classifier. However, directly minimizing (2.1) to ob-
tain the Bayes classifier is generally intractable because of its non-convexity [4]. Thus,
we generally use the convex surrogate loss l(ζ, y), which is an upper bound of 0-1 loss,
and minimize the expected risk L, which is the expectation of the loss function value with
respect to ρ:

L(g) = E(X,Y )∼ρ [l(g(X), Y )] . (2.2)

Its infimum value amongst all measurable functions is denoted by L∗ and it is called
the Bayes risk. In general, the loss function l has a form l(ζ, y) = ϕ(ζy) where ϕ : R→ R
is a non-negative convex function. The typical examples are logistic loss ϕ(v) = log(1 +
exp(−v)) for logistic regression [25], hinge loss ϕ(v) = max{0, 1 − v} for support vector
machine [18], and exponential loss ϕ(v) = exp(−v) for AdaBoost [24]. These functions
are illustrated in Figure 2.2.

Next, we show the relationship between the expected classification error R and the
expected risk L. Firstly, the conditional expected risk on data point x is given as follows:

E[ϕ(Y g(X))|X = x] = ρ(1|x)ϕ(g(x)) + (1− ρ(1|x))ϕ(−g(x)).

It is useful to think of this in terms of a generic probability µ ∈ [0, 1] and a generic
classifier value α ∈ R, and we denote it by Cµ(α):

Cµ(α)
def
= µϕ(α) + (1− µ)ϕ(−α).

For µ ∈ [0, 1], define its optimal value with respect to α as follows:

l∗(µ)
def
= inf

α∈R
Cµ(α) = inf

α∈R
{µϕ(α) + (1− µ)ϕ(−α)} .

If its infimum is uniquely attained for some α, we can define the link function h∗ :
[0, 1]→ R, which connects the hypothesis space and the probability measure:

h∗(µ)
def
= argmin

α∈R
Cµ(α) = argmin

α∈R
{µϕ(α) + (1− µ)ϕ(−α)} .
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Intuitively, for given data point x, h∗(ρ(1|x)) is the optimal prediction value which mini-
mizes the expected risk on x. It can be checked that the following equality holds:

L∗ = inf
g:X→R

L(g) = E [l∗(ρ(1|X))] = E[l(h∗(ρ(1|X)), Y )].

In addition, define the optimal value of Cµ(α) under the constraint that the sign of α
disagrees with that of 2µ− 1:

l−∗ (µ)
def
= inf

α:α(2µ−1)<0
Cµ(α) = inf

α:α(2µ−1)<0
{µϕ(α) + (1− µ)ϕ(−α)} .

Then we define transform function ψ : [0, 1]→ [0,∞) by ψ
def
= ψ̃∗∗, where

ψ̃(θ) = l−∗

(
1 + θ

2

)
− l∗

(
1 + θ

2

)
.

and g∗∗ : [0, 1] → R is the Fenchel-Legendre biconjugate*1 of g : [0, 1] → R, which
satisfies*2

epi g∗∗ = co epi g.

Finally, we can relate the excess classification error (equivalent to the expected classi-
fication error minus the Bayes classification error) to the excess risk (equivalent to the
expected risk minus the Bayes risk) through transform function ψ [10, Theorem 3]:

ψ(R(g)−R∗) ≤ L(g)− L∗. (2.3)

Since our final objective is minimizing the expected classification error, it is natural to
expect that minimizing (2.2) ensures minimizing (2.1) (the Bayes risk consistency). In
other words, a function that attains L∗ should also attain R∗. The following proposition
shows conditions on ϕ to satisfy this consistency.

Proposition 2.1 (Theorem 3 in [10]). The following conditions are equivalent:

• For any sequence of measurable functions gi : X → R and any distribution ρ on
X × Y,

lim
i→∞

L(gi) = L∗ implies lim
i→∞

R(gi) = R∗.

• For any sequence θi in [0, 1],

lim
i→∞

ψ(θi) = 0 if and only if lim
i→∞

θi = 0.

When these conditions hold, such ϕ is called classification-calibrated.

Example (Logistic loss). Here ϕ(α) = log(1 + exp(−α)). If µ = 0, then Cµ(α) → 0 as
α → −∞; if µ = 1, then Cµ(α) → 0 as α → ∞. Thus we have l∗(0) = l∗(1) = 0 and h∗
cannot be defined for µ = 0, 1. For µ ∈ (0, 1), we have

h∗(µ) = log
µ

1− µ
,

l∗(µ) = −µ logµ− (1− µ) log(1− µ),
l−∗ (µ) = Cµ(0) = log 2,

*1 For g : [0, 1] → R, its Fenchel-Legendre conjugate g∗ : [0, 1] → R is given by g∗(y) =
supx∈[0,1]{⟨x, y⟩ − g(x)}, and its biconjugate g∗∗ is further conjugate of g∗.

*2 Here co S is the closure of the convex hull of the set S, and epi g is the epigraph of the function g,
that is, the set {(x, t) : x ∈ [0, 1], g(x) ≤ t}.
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and so

ψ(θ) = ψ̃(θ) =
1 + θ

2
log(1 + θ) +

1− θ
2

log(1− θ),

where the first equality follows from that ψ̃ is convex. Since ψ(0) = 0 and ψ is strictly
increasing and continuous, it satisfies the second condition in Proposition 2.1 and is thus
classification-calibrated. In addition, we have log(1 + θ) ≈ θ around θ = 0 and thus
ψ(θ) ≈ θ2, so we can see from (2.3) that the convergence rate of the excess classification
error is bounded by square root of that of the excess risk in the case of logistic loss.

For other loss functions, similar calculation yields that ψ(θ) = 1 −
√
1− θ2 for expo-

nential loss and ψ(θ) = θ for hinge loss. So they also satisfy the second condition of the
proposition and are thus classification-calibrated.

Remark. For convex ϕ, a simpler condition which is equivalent to being classification-
calibrated is known (Theorem 6 in [10]); ϕ is classification-calibrated if and only if ϕ is
differentiable at 0 and ϕ′(0) < 0.

If there is a one-to-one correspondence between a probability and a classifier value
thorough the link function h∗, one can relate the excess risk to the divergence between
corresponding probability measures. Since l∗ is a concave function (Lemma 2.1 in [66]),
if additionally l∗ is differentiable, we can define the Bregman divergence associates with
l∗ as follows:

dl∗(η1, η2)
def
= −l∗(η2) + l∗(η1) + l′∗(η1)(η2 − η1).

We have the following proposition.

Proposition 2.2 (Theorem 2.2 in [66]). Suppose ϕ is differentiable and h∗ is well-defined,
differentiable and invertible. Then l∗ is also differentiable and the following equality holds:

L(g)− L∗ = E
[
dl∗
(
h−1
∗ (g(X)), ρ(1|X)

)]
.

If the divergence dl∗ is positive, that is, dl∗(η1, η2) = 0 if and only if η1 = η2, we can
see that the Bayes classifier g∗, which satisfies L(g∗) = L∗, is equal to h∗(ρ(1|·)) almost
surely.

Example (Logistic loss). Suppose ρ(1|X) ∈ (0, 1) almost surely. Indeed, ϕ(α) = log(1 +
exp(−α)) is differentiable and h∗(µ) = log(µ/(1 − µ)) is well-defined, differentiable and
invertible on (0, 1). Furthermore, we have

dl∗(η1, η2) = η2 log

(
η1
η2

)
+ (1− η2) log

(
1− η1
1− η2

)
.

This coincides with the Kullback-Leibler divergence between two Bernoulli distributions
with parameter η1 and η2, and is thus positive.

2.1.2 Low noise condition

Although properties introduced above hold for any distribution ρ on samples, it is useful
and reasonable to consider the case where there is small noise on labels. For example, in
image datasets such as MNIST, a label is almost deterministically produced for almost
all images and there are few ambiguous images that can be classified into multiple labels.
From this perspective, it is reasonable to assume the conditional label probability ρ(1|X)
tends to be bounded away from 1/2. Here we formally introduce this low noise condition.
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Fig. 2.3: The example of a conditonal distribution satisfying strong low noise condition.

Definition 2.1 (Low noise condition [63, 10, 6]). A conditional label probability ρ(1|X)
satisfies low noise condition if there exists C,α > 0 such that the following inequality holds
for all δ ∈ [0, 1/2]:

P [|ρ(Y = 1|X)− 1/2| ≤ δ] ≤ Cδα.

The strongest version of the low noise condition, which corresponds to the case of
α =∞, is described as follows:

Definition 2.2 (Strong low noise condition [63, 6]). A conditional label probability ρ(1|X)
satisfies the strong low noise condition if there exists δ ∈ [0, 1/2] such that the following
inequality holds for ρX -almost sure x ∈ X :

|ρ(Y = 1|x)− 1/2| > δ.

In this situation, the conditional probability is uniformly bounded away from 1/2 as
shown in Figure 2.3. Under the low noise condition, there is a tighter version of bound
(2.3) (Theorem 10 in [10]):

C (R(g)−R∗)
1− 1

α ψ

(
(R(g)−R∗)

1
α

2C

)
≤ L(g)− L∗. (2.4)

We note that since ψ is convex, it never gives a worse rate than (2.3). However, even if
we set α to ∞, the resulting convergence of R cannot be faster than that of L.

Remark (Relation to the complete separability). In the theoretical analysis of classifica-
tion problems, it is also common to consider labels to be produced deterministically and
sometimes impose the complete separability, where the Bayes classifier can predict labels
with 100% accuracy [56, 29]. This is much stronger condition than the low noise condition
because it corresponds to the extreme case of the strong low noise condition, where δ is
close to 1/2.

In this section, we have introduced some basic properties of binary classification prob-
lems, mainly about the relationship between the classification error and the loss function.
However, in order to minimize the expected risk L in practice, we have to specify a hypoth-
esis space and an optimization method. Throughout this thesis, we consider a reproducing
kernel Hilbert space (RKHS) as the former and stochastic gradient descent (SGD) as the
latter. We introduce them in the following section.
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2.2 Stochastic Gradient Descent on RKHS

2.2.1 Reproducing kernel Hilbert space

Firstly, we introduce a reproducing kernel Hilbert space (RKHS), which is widely adapted
in a non-parametric statistical learning. Here we define a positive definite kernel.

Definition 2.3 (Positive definite kernel). k : X ×X → R is called positive definite kernel
if for any finite set {x1, . . . , xn} ⊂ X , the n × n matrix whose (i, j) entry is k(xi, xj) is
positive semi-definite.

Popular examples are Gaussian kernel with k(x1, x2) = exp(−∥x1−x2∥22/σ2) for a band
width parameter σ > 0, and polynomial kernel with k(x1, x2) = (1+x1 ·x2)j for a degree
parameter j where X = Rd. For every positive definite kernel k, a Hilbert space spanned
by {k(·, x) | x ∈ X} is defined:

Definition 2.4 (Reproducing kernel Hilbert space (RKHS)). A reproducing kernel Hilbert
space H associates with a positive definite kernel k : X × X → R is a Hilbert space with
inner product ⟨·, ·⟩H satisfying the following properties:

1. k(·, x) ∈ H for any x ∈ X .
2. f(x) = ⟨f, k(·, x)⟩H for any x ∈ X and f ∈ H.

It is known that every positive definite kernel has a unique RKHS [3]. We note that
if X = Rd and k(x1, x2) = x1 · x2, its RKHS H is equal to Rd so the above definition
includes the ordinal finite-dimensional Euclid space. For a more detailed characterization
of RKHS, see Appendix A. Although in general RKHS can be infinite dimensional and
thus have plenty expressive power, the above property enables us to treat the optimization
problem in same algebraic framework as parametric models, and several studies extend
linear parametric models to non-parametric ones on RKHS, such as kernel SVM [12],
kernel PCA [53] and kernel k-means [21].

In this thesis, we consider solving the minimization problem of the expected risk intro-
duced in the last section with RKHS H for some kernel k as the hypothesis space:

min
g∈H

L(g).

In general, non-parametric models have strong expressive power, so it is common to add
regularization term to the loss function in order to avoid over-fitting. Particularly, we
consider the following Tikhonov regularization with regularization parameter λ:

min
g∈H

{
Lλ(g)

def
= L(g) + λ

2
∥g∥2H

}
. (2.5)

We also use the following notation:

gλ
def
= argmin

g∈H
Lλ(g).

The uniqueness of the minimizer is ensured by the regularization term. We note that the
purpose of the regularization in (2.5) is to accelerate and stabilize the optimization, rather
than to avoid over-fitting since we directly optimize the expected (not empirical) loss L.
See also remark at the end of this section.
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2.2.2 Stochastic gradient descent

Now we introduce stochastic gradient descent (SGD) [49] as an optimization method of
(2.5). It is a workhorse for large-scale machine learning problems due to its computational
efficiency. The main idea of SGD is to replace a gradient of the objective with an unbiased
(sometimes biased) estimate of that which can be calculated from one or small batch of
samples. First, recall the definition of a gradient of a function F on H at g ∈ H; it is an
element ∇F (g) ∈ H satisfying the following equation:

F (g + h) = F (g) + ⟨∇F (g), h⟩H + o(∥h∥H).

For the expected risk L, when k(x, x) is uniformly bounded on X , its gradient at g takes
the form E[∂ζ l(g(X), Y )k(·, X)], where ∂ζ is a partial derivative with respect to the first
variable of l. To see this, we have

L(g + h) = E[l((g + h)(X), Y )]

= E[l(g(X), Y ) + ∂ζ l(g(X), Y )h(X) + o(|h(X)|)]
= L(g) + ⟨E[∂ζ l(g(X), Y )k(·, X)], h⟩H + o(∥h∥H),

where the last equality follows from the fact that

h(X) = ⟨h, k(·, X)⟩H,

|h(X)| ≤ ∥h∥H
√
k(X,X).

Thus, the stochastic gradient of Lλ at g ∈ H for a sample Z = (X,Y ) ∈ X × Y is given
by

Gλ(g, Z)
def
= ∂ζ l(g(X), Y )k(·, X) + λg.

The algorithm of stochastic gradient descent is described in Algorithm 2.1.

Algorithm 2.1 Stochastic Gradient Descent (SGD)

Input: regularization parameter λ, number of iterations T , learning rates {ηt}Tt=1

Output: classifier gT+1

Initialize g1 ∈ H
for t = 1, . . . , T do

Randomly draw a sample zt = (xt, yt) ∼ ρ
gt+1 ← gt − ηtGλ(gt, zt)

end for
return gT+1

Although this simple scheme is widely used in practice, it is also common to average
all intermediate iterates with specified weights in order to decrease the effect of variance
of stochastic gradients and stabilize the optimization. From theoretical perspective, the
averaging scheme is used to derive the optimal rate of the stochastic optimization [46, 51,

36], which is known to O(1/
√
T ) for convex and O(1/T ) for strongly convex objectives [39,

1]. The algorithm of this averaged stochastic gradient descent is described in Algorithm
2.2. The popular choices of αt are uniform weights (called Polyak-Ruppert averaging)
[46, 51] and polynomial decaying weights [32, 42]. For strongly convex objectives, SGD
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Algorithm 2.2 Averaged Stochastic Gradient Descent (ASGD)

Input: regularization parameter λ, number of iterations T , learning rates {ηt}Tt=1, aver-

aging weights {αt}T+1
t=1 .

Output: classifier gT+1

Initialize g1 ∈ H
for t = 1, . . . , T do

Randomly draw a sample zt = (xt, yt) ∼ ρ
gt+1 ← gt − ηtGλ(gt, zt)

end for
return gT+1 =

∑T+1
t=1 αtgt

with the polynomial decaying averaging achieves the optimal O(1/T ) convergence rate,
whereas that with the uniform averaging only achieve a sub-optimal O(log T/T ) rate [32].
From this reason, we deal with polynomial decaying averaging and a learning rate adopted
in [42], which is described as

αt =
2(γ + t− 1)

(2γ + T )(T + 1)
,

ηt =
2

λ(γ + t)
,

where γ > 0 is an offset parameter for the time index. This learning rate is also used in
[14]. We note that an averaged iterate gt can be updated iteratively as follows:

g1 = g1,

gt+1 = (1− θt)gt + θtgt+1, θt =
2(γ + t)

(t+ 1)(2γ + t)
.

Using this formula, we can compute the averaged output without storing all internal
iterate (gt)

T+1
t=1 . Throughout this thesis, we consider Algorithm 2.2 as an optimization

method and simply refer to it as SGD.
If we assume that a cost of kernel evaluation is O(1), the running time complexity is

O(t) for iteration t, thus overall complexity is O(T 2) after T steps. Since we have to store
T basis {k(·, x1), . . . , k(·, xT )} and their coefficients, the space complexity is O(T ).

Remark (Regularization and SGD). It should be noted that there are two different
paradigms in analyses of stochastic optimization: finite sum and online setting. In the
former setting, we have all samples before actual training starts and we draw a sample
from them at each iteration. Thus, the goal of optimization is to minimize a (regularized)
empirical risk of given finite samples {(x1, y1), . . . , (xn, yn)}:

min
g∈H

{
L̂λ(g)

def
=

1

n

n∑
i=1

l(g(xi), yi) +
λ

2
∥g∥2H

}
.

In this setting, the generalization error of generated hypothesis gT+1 is decomposed as
follows:

L(gT+1)− L∗ = L(gT+1)− L(ĝλ)︸ ︷︷ ︸
optimization error of SGD

+ L(ĝλ)− L∗︸ ︷︷ ︸
generalization error of ERM

,
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where ĝλ is an empirical risk minimizer:

ĝλ
def
= argmin

g∈H
L̂λ(g).

Thus, the performance of SGD is measured only from an optimization perspective, that
is, the number of iterations required to get close to the empirical risk minimizer. In
addition, the regularization term is included in the objective since that is essential for
infinite-dimensional models to learn with empirical risk minimization (ERM) in general
[15, 35, 59]. The trade-offs of optimization and generalization error in this setting are
discussed in [13]. Besides, variance reduction technique [30, 20] gives faster convergence
rates in finite sum setting (e.g., linear convergence with strong convexity), which utilizes
the fact that exact gradients can be computed with O(n) time in this setting.

In contrast to this, in the online setting, we obtain a new sample in each iteration
and thus directly optimize towards a population risk minimizer. In this sense, regulariza-
tion terms are not essential in this setting if we set an appropriate step size to balance
optimization and generalization error. Indeed, some recent studies have shown that the
optimal rates of, in particular, non-parametric least squares regression can be achieved by
SGD without regularization terms [22, 44, 34, 26].

Our analysis lies in the online setting rather than the finite sum setting. However, we
add a regularization term in the objective (2.5) in order to apply stability arguments to
derive a convergence of generalization error as explained in the following section. It is an
important future work to investigate whether the generalization analysis of SGD without
a regularization term for general convex loss function is achievable or not.

Remark. Since we consider the one-pass SGD where we obtain a new sample in each
iteration, sample size n and iteration number T have the same meaning throughout this
thesis.

2.3 Convergence Properties of SGD
In this section, we introduce some results about the convergence rate of SGD, which are
from [42]. Since a returned hypothesis gT+1 is a random variable depending on samples
{(x1, y1), . . . , (xT , yT )}, we evaluate the convergence of gT+1 separately; the convergence
of the expected point E[gT+1] to the population risk minimizer gλ and the concentration
of gT+1 to its expectation E[gT+1] (see Figure 2.4).

2.3.1 Basic matters in convex optimization

Firstly, we provide some definitions that are widely adapted in the literature of convex
optimization [40]. Let V be a Hilbert space throughout this section. We note that for a
differantiable function f : V → R, its gradient ∇f is a linear operator from V to V .

Definition 2.5. We say that a function f : V → R is G-Lipschitz continuous (G > 0) if
f satisfies

|f(v1)− f(v2)| ≤ G∥v1 − v2∥V
for any v1, v2 ∈ V.

Definition 2.6. f : V → R is called L-Lipschitz smooth (L > 0) if f is differentiable and
satisfies

∥∇f(v1)−∇f(v2)∥V ≤ L∥v1 − v2∥V (2.6)
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for any v1, v2 ∈ V.

If f is convex, (2.6) is equivalent to the following (Theorem 2.1.5 in [40]):

⟨∇f(v1)−∇f(v2), v1 − v2⟩V ≤ L∥v1 − v2∥2V . (2.7)

Definition 2.7. A convex and differentiable function f : V → R is called µ-strongly
convex (µ > 0) if it satisfies

f(v2) ≥ f(v1) + ⟨∇f(v1), v2 − v1⟩V +
µ

2
∥v2 − v1∥2V

for any v1, v2 ∈ V.

As f is convex, it can be easily checked that a function f(·) + λ
2 ∥ · ∥

2
V is λ-strongly

convex.

2.3.2 Convergence of the expected point

Next, we show the convergence rate of the expected point to the population minimizer.
Before entering to the result, we have to impose some ordinal assumptions about the loss
function and the kernel function.

Assumption 2.1. l(·, y) : R → R is convex, differentiable, G-Lipschitz continuous and
L-Lipschitz smooth. That is, for any ζ, ζ ′ ∈ R and y ∈ Y,

|∂ζ l(ζ, y)| ≤ G,
|∂ζ l(ζ, y)− ∂ζ l(ζ ′, y)| ≤ L|ζ − ζ ′|.

To control the boundedness of functions in H, we need the following:

Assumption 2.2. There exists R > 0 such that k(x, x) ≤ R2 for any x ∈ X .

This assumption yields an important relationship between different norms of f ∈ H:

∥f∥L∞(dρX ) = sup
x∈supp(ρX )

⟨f, k(·, x)⟩H ≤ sup
x∈supp(ρX )

√
k(x, x)∥f∥H ≤ R∥f∥H.

Let l(g, z) denote l(g(x), y) for z = (x, y) and ∂gl(g, z) denote the gradient of l(g, z) with
respect to g ∈ H. Combining Assumption 2.1 and 2.2 yields LR2-smoothness in H, since

⟨∂gl(g, z)− ∂gl(g′, z), g − g′⟩H = ⟨(∂ζ l(g(x), y)− ∂ζ l(g′(x), y))k(·, x), g − g′⟩H
≤ L(g(x)− g′(x))2

≤ LR2∥g − g′∥2H
holds for any z ∈ X × Y and it is known as an equivalent condition of smoothness from
(2.7). Under these assumptions, the convergence rate of the expected point in Algorithm
2.2 is derived.

Proposition 2.3 (Proposition C in [42]). Suppose Assumption 2.1, 2.2 holds. Consider

Algorithm 2.2 with ηt =
2

λ(γ+t) and αt =
2(γ+t−1)

(2γ+T )(T+1) and assume ∥g1∥H ≤ (2γ1+1/λ)GR

and η1 ≤ min{1/LR2, 1/2λ}. Then, it follows that

∥E[gT+1]− gλ∥2H ≤
2

λ

(
18G2R2

λ(2γ + T )
+

λγ(γ − 1)

2(2γ + T )(T + 1)
∥g1 − gλ∥2H

)
.

This result shows that the expected point E[gT+1] converges to the population risk
minimizer gλ at sub-linear rate. This is shown by standard arguments in analyses of SGD
and the proof is found in Appendix C.
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2.3.3 Concentration to the expected point

Next proposition shows that the random variable gT+1 concentrates to its mean with an
exponentially decaying probability.

Proposition 2.4 (Proposition 2 and D in [42]). Suppose Assumption 2.1, 2.2 holds.

Consider Algorithm 2.2 with ηt = 2
λ(γ+t) and αt = 2(γ+t−1)

(2γ+T )(T+1) and assume ∥g1∥H ≤
(2γ1 + 1/λ)GR and η1 ≤ min{1/LR2, 1/2λ}. Then, it follows that

P
[∥∥gT+1 − E[gT+1]

∥∥
H ≥ ϵ

]
≤ 2 exp

(
− λ

2(2γ + T )

26 · 32G2R2
ϵ2
)
.

Here we briefly show the idea of the proof. The proof relies on the stability of SGD
and a concentration inequality for martingale differences. Let Z1, . . . , ZT be i.i.d. random
variables following ρ and Ft be a σ-field generated by Z1, . . . , Zt. It consists a filtra-
tion since Ft−1 ⊂ Ft holds. Let gT be an output of Algorithm 2.2 trained on samples
Z1, . . . , ZT and define

Dt
def
= E[gT+1|Ft]− E[gT+1|Ft−1]

for 1 ≤ t ≤ T . Then we have

gT+1 − E[gT+1] =

T∑
t=1

Dt (2.8)

and D1, . . . , DT consists a martingale difference sequence, that is,

• Dt is Ft-measurable,
• E[Dt|Ft−1] = 0.

We utilize the following concentration inequality to obtain a probabilistic bound of (2.8):

Lemma 2.1 (Theorem 3.4 in [45] ). Let D1, . . . , DT be a martingale difference sequence

taking values in H. Assume that there exists cT > 0 such that
∑T

t=1 ∥Dt∥2∞ ≤ c2T , where
∥Dt∥∞ is a essential supremum of ∥Dt∥H. Then for any ϵ > 0, we have

P

[
sup

1≤s≤T

∥∥∥∥∥
s∑

t=1

Dt

∥∥∥∥∥
H

≥ ϵ

]
≤ 2 exp

(
− ϵ2

2c2T

)
.

The bound on cT is obtained in the following manner. Let Z ′
t be a random variable

following ρ which is independent from Z1, . . . , ZT and gtT+1 be an output of Algorithm
2.2 depending on (Z1, . . . , Zt−1, Z

′
t, Zt+1, . . . , ZT ). Then we have

E[gtT+1|Ft] = E[gT+1|Ft−1]

and

∥Dt∥∞ = ∥E[gT+1|Ft]− E[gT+1|Ft−1]∥∞
= ∥E[gT+1 − gtT+1|Ft]∥∞
≤ E[∥gT+1 − gtT+1∥∞|Ft]

= ∥gT+1 − gtT+1∥∞.
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Fig. 2.4: Convergence of gT+1.

Thus, if ∥gT+1 − gtT+1∥H is uniformly bounded over Z1, . . . , ZT , Z
′
t for all 1 ≤ t ≤ T , the

existence of cT can be shown. To show the concentration with respect to T , it is essential
for cT to be an decreasing function of T . Indeed, we can derive cT on the order of 1/

√
T

by utilizing a stability of SGD on strongly convex objectives. The full proof is found in
Appendix C.

We note that similar arguments about generalization analysis using a stability of a
learning algorithm is discussed in [55] and that of SGD is also derived in [27] for another
purpose. Intuitively, if an output of an algorithm has small deviation when one of training
samples are replaced with another one, it means that the output generalizes well. The
main characteristic of these arguments is that it does not depend on a complexity of a
hypothesis class, which is necessary for analyses based on the uniform convergence (e.g.,
[54]).

Remark. We could derive cT in Lemma 2.1 in a similar manner even if the objective
function is not strongly convex. However the resulting cT is increasing in T in the absence
of strong convexity [27], so the meaningful convergence cannot be obtained. This is the
reason why we deal with the regularization term in the objective (2.5).

2.4 Positioning of the Thesis
One of the main purposes of the thesis is to show the effectiveness of SGD in terms of the
convergence speed of the excess classification error. Since the convergence of the expected
risk derived from Proposition 2.3 is O(1/

√
T ), straightforward analysis introduced in

Section 2.1 yields equal or slower rate than O(1/
√
T ) of the excess classification error.

Despite this fact, recent studies [43, 42] have shown that the exponential convergence of
the excess classification error is achieved by SGD under the strong low noise condition.
The main idea behind their proof is analyzing the convergence of the excess classification
error not via the convergence of the excess risk (as introduced in Section 2.1), but via
the convergence of the hypothesis, which is described in Proposition 2.3 and Proposition
2.4. This idea is originally used in the classical analysis of the classification problem
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[6], which showed that the ERM classifier achieves the fast convergence of the excess
classification error under the low noise condition. Utilizing these ideas, we demonstrate
a fast convergence of the excess classification under the low noise condition in Section 3.
The relation to the previous results is shown in Table 2.1.

Low noise Strong low noise
ERM [63, 6] [31, 6]
SGD Chapter 3 [43, 42]

Table 2.1: Previous research about classification problems.

From practical perspectives, the original kernel methods require O(n2) time and O(n)
space complexity even if applying SGD as an optimization method. Thus, in many situa-
tions, we do not deal with the original RKHS. In Section 4, we consider applying random
features [47], which is the most widely adopted kernel approximation method. Combining
that with SGD yields O(nM) time and O(M) space complexity, where M denotes the
number of features, that is, the dimension of kernel approximation. Thus it is frequently
applied in practical large-scale learning problems where n is very large. From a theoreti-
cal perspective, there is a trade-off between the error induced by the approximation and
its computational cost and it has been shown that random features actually reduce com-
putational cost in a regression setting [16]. In particular, they showed that O(

√
n log n)

features are sufficient to achieve the ordinal O(1/
√
n) learning rate of the expected risk.

However, for classification setting, it has only been shown that O(n) features are required
to achieve O(1/

√
n) rate of the expected risk, which means computational gain comes at

expense of the approximation accuracy. In Section 4, we show that if we consider the
convergence of the excess classification error, the constant number of features is sufficient
to achieve the exponential convergence under the strong low noise condition. The relation
to the previous research about SGD on RKHS is shown in Table 2.2.

Original RKHS Random features
Regression [22, 44] [16]

Classification
[43, 42] Chapter 4

(strong low noise)

Table 2.2: Previous research about SGD and random features.
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Chapter 3

Stochastic Gradient Descent under Low

Noise Condition

3.1 Motivation
In this study, we consider optimizing binary classification problems on RKHS using
stochastic gradient descent (SGD). As introduced in Section 2.1, the final objective of
classification problems is to minimize expected classification errors and we usually do
that by optimizing the convex surrogate loss instead of 0-1 loss. Such an approximation
is theoretically justified by the consistency property [10, 66] and this property is satisfied
for many practically used loss functions.

When one considers convergence rates of excess classification errors, it can be simply
derived from those of excess risks and it can be accelerated by assuming the low noise
condition as discussed in Section 2.1. However, the resulting convergence rates of excess
classification errors are generally slower than those of the excess risks as shown in (2.4).

Since the optimal convergence rates of excess risks are known to O(1/
√
T ) and O(1/T ),

where T denotes the number of iterations, for convex and strongly convex objectives
respectively [1, 39], it means that the convergence of excess classification errors cannot be
faster than these rates in general.

In [6], it is shown that using empirical risk minimization (ERM) under the low noise
condition and additional assumptions, the convergence rates of excess classification errors
can be faster than those of excess risks and can be super-fast, that is, faster than O(1/n)
where n denotes the sample size. However, these results are somewhat inadequate to
explain the practical success of SGD and it remains unclear such a fast convergence can
be achieved by SGD.

Recently, it has been shown that SGD on RKHS achieves the exponential convergence
rate of excess classification errors in the latter half of the training by assuming the strong
low noise condition holds. In particular, [43] showed that for squared loss function and
[42] extended that to general smooth loss functions including logistic loss. However, the
strong low noise condition is somewhat restrictive, since it does not permit a conditional
probability on any sample to stay around 1/2.

Contributions. In this study, we extend the results in [42] and show that the super-fast
convergence rates of excess classification errors are actually achieved by SGD under the
general (not strong) low noise condition when optimizing general smooth loss functions.
Also, our fast rates hold for all iterations T unlike the exponential rates under the strong
low noise condition, where such fast convergence starts from the middle of the training.
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Chapter organization. This chapter is organized as follows. In Section 3.2, the problem
setting of binary classification and the algorithm of SGD treated in this study are briefly
reviewed. In Section 3.3, we present our primary result describing the fast convergence
rate of the classification error under the low noise condition. Next, a more concrete
condition that is required to derive fast convergence is investigated in Section 3.4.

3.2 Problem Setting
In this section, we briefly describe a problem setting and assumptions for the binary
classification. Let X and Y = {−1, 1} be a feature space and the set of binary labels,
respectively; ρ denotes a probability measure on X × Y, by ρX the marginal distribution
on X, and by ρ(·|X) the conditional distribution on Y , where (X,Y ) ∼ ρ.

As introduced in Chapter 2, our final objective is to minimize the expected classification
error R(g) defined below amongst all measurable functions:

R(g) = E(X,Y )∼ρ [I(sgn(g(X)), Y )] , (3.1)

where sgn(x) = 1 if x > 0 and −1 otherwise, and I represents 0-1 loss:

I(y, y′) =

{
1 (y ̸= y′)

0 (y = y′).

By definition, g(x) = E[Y |x] = 2ρ(1|x) − 1 minimizes R. However, directly minimizing
(3.1) to obtain the Bayes classifier is intractable because of its non-convexity. Thus, we
generally use the convex surrogate loss l(ζ, y) instead of the 0-1 loss and minimize the
expected risk L(g) of l:

L(g) = E(X,Y )∼ρ [l(g(X), Y )] . (3.2)

In general, the loss function l has a form l(ζ, y) = ϕ(ζy) where ϕ : R→ R is a non-negative
convex function. The typical examples are logistic loss, where ϕ(v) = log(1 + exp(−v))
and hinge loss, where ϕ(v) = max{0, 1 − v}. Minimizing the expected risk (3.2) ensures
minimizing the expected classification error (3.1) if l is classification-calibrated [10], which
has been proven for several practically implemented losses including hinge loss and logistic
loss.

As in Chapter 2, we consider a reproducing kernel Hilbert space (RKHS) H associated
with a positive definite kernel function k : X × X → R as the hypothesis space. Recall
that it satisfies f(x) = ⟨f, k(·, x)⟩H holds for all f ∈ H and x ∈ X , where ⟨·, ·⟩H denotes
the inner product of H. In addition, let ∥ · ∥H denote the norm of H induced by the inner
product. Under these settings, we attempt to solve the following minimization problem:

min
g∈H

{
Lλ(g)

def
= L(g) + λ

2
∥g∥2H

}
. (3.3)

We consider solving the objective (3.3) using averaged stochastic gradient descent, which
is described in Algorithm 3.1. Recall that a stochastic gradient of Lλ at g ∈ H on sample
Z = (X,Y ) ∈ X × Y is given as follows:

Gλ(g, Z)
def
= ∂ζ l(g(X), Y )k(·, X) + λg.
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As introduced in Section 2.2.2, we consider the following learning rates ηt and averaging
weights αt:

αt =
2(γ + t− 1)

(2γ + T )(T + 1)
, ηt =

2

λ(γ + t)
.

where γ > 0 is an offset parameter for the time index.

Algorithm 3.1 Averaged Stochastic Gradient Descent (ASGD)

Input: regularization parameter λ, number of iterations T , learning rates {ηt}Tt=1, aver-

aging weights {αt}T+1
t=1 .

Output: classifier gT+1

Initialize g1 ∈ H
for t = 1, . . . , T do

Randomly draw a sample zt = (xt, yt) ∼ ρ
gt+1 ← gt − ηtGλ(gt, zt)

end for
return gT+1 =

∑T+1
t=1 αtgt

To ensure the convergence of SGD, we make several assumptions. First, we impose the
smoothness of loss functions and boundedness of kernel functions as introduced in Section
2.3.

Assumption 3.1. l(·, y) is convex, differentiable, G-Lipschitz continuous and L-Lipschitz
smooth. That is, for any ζ, ζ ′ ∈ R and y ∈ Y,

|∂ζ l(ζ, y)| ≤ G,
|∂ζ l(ζ, y)− ∂ζ l(ζ ′, y)| ≤ L|ζ − ζ ′|.

Assumption 3.2. There exists R > 0 such that k(x, x) ≤ R2 for any x ∈ X .

To characterize the Bayes rule (the minimizer of L), we impose several assumptions on
ϕ. Recall the definition of the link function, which connects the hypothesis space and the
probability measure:

h∗(µ) = argmin
α∈R

{µϕ(α) + (1− µ)ϕ(−α)} .

In addition, its corresponding value is denoted by l∗:

l∗(µ) = min
α∈R
{µϕ(α) + (1− µ)ϕ(−α)} .

Although h∗(µ) may not be uniquely determined nor well-defined in general, the following
assumption ensures these properties.

Assumption 3.3. ρ(1|X) takes values in (0, 1), ρX -almost surely; ϕ is differentiable and
h∗ is well-defined, L′-Lipschitz continuous, differentiable, monotonically increasing, and
invertible over (0, 1). Moreover, it follows that

sgn(µ− 1/2) = sgn(h∗(µ)).

As introduced in Section 2.1, for logistic loss we have h∗(µ) = log(µ/(1 − µ)) and the
above condition is satisfied with L′ = 4. Since it is known that l∗ is a concave function, we
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introduce Bregman divergence for concave function l∗ to ensure the uniqueness of Bayes
rule g∗ of L:

dl∗(η1, η2) = −l∗(η2) + l∗(η1) + l′∗(η1)(η2 − η1).

Assumption 3.4. Bregman divergence dl∗ derived by l∗ is positive, that is, dl∗(η1, η2) = 0
if and only if η1 = η2. For the expected risk L, a unique Bayes rule g∗ (up to zero measure
sets) exists in H.

For logistic loss, we have shown in Section 2.1 that dl∗ coincides with Kullbuck-Leibler
divergence, and thus, the positivity of the divergence holds. Here recall that if ϕ is
differentiable and h∗ is differentiable and invertible, the excess risk can be expressed
using dl∗ from Proposition 2.2:

L(g)− L(g∗) = EX [dl∗(h
−1
∗ (g(X)), ρ(1|X))].

Thus combining Assumptions 3.3 and 3.4 implies that Bayes rule g∗ is equal to h∗(ρ(1|X)),
ρX -almost surely and contained in the original RKHS H.

The next is the low noise condition on sample distribution introduced in Section 2.1.

Assumption 3.5. The probability distribution ρ satisfies the low noise condition. That
is, there exists C1, α > 0 such that the following inequality holds for all δ > 0:

P [|ρ(Y = 1|X)− 1/2| ≤ δ] ≤ C1δ
α.

Finally, we characterize the induced bias by the regularization parameter λ on generated
hypothesis gλ defined as follows:

gλ
def
= argmin

g∈H
Lλ(g).

Assumption 3.6. There exists C2, κ > 0 such that the following inequality holds for all
λ > 0:

∥gλ − g∗∥L∞(dρX ) ≤ C2λ
κ.

Although it can be shown that arbitrary small bias is achieved with sufficiently small
regularization parameter λ (Proposition 3.1), generally it is difficult to show such a con-
vergence has a order parameter κ. We investigate the several sufficient condition to satisfy
Assumption 3.6 in Section 3.4.

3.3 Main Results
Here we present our main result, which shows that the convergence rate of the excess
classification errors can be faster by assuming the low noise condition.

Theorem 3.1. Suppose Assumption 3.1-3.6 holds. Consider Algorithm 4.1 with λ =(
288C−2

2 G2R4
) 1

2+2κ T− 1
2+2κ , ηt =

2
λ(γ+t) and αt =

2(γ+t−1)
(2γ+T )(T+1) where γ is a positive value

such that ∥g1∥H ≤ (2η1+1/λ)GR and η1 ≤ min{1/LR2, 1/2λ}. Then there exists constant
C > 0 such that the following inequality holds:

E
[
R(gT+1)

]
−R(g∗) ≤ CT− (α+1)κ

2+2κ .

Proof is found in Appendix D. We can see that when α > 1 + 2/κ, the resulting
convergence rate is faster than 1/T (super fast rate). Note that the convergence rates
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derived by the one of excess risk is the following form (Theorem 10 in [10]):

C (R(g)−R∗)
1− 1

α ψ

(
(R(g)−R∗)

1
α

2C

)
≤ L(g)− L∗,

where ψ is a transform function defined in Section 2.1. As discussed in Section 2.1, the
obtained convergence rate of excess classification errors from the above inequality does
not be faster than the one of excess risk even if we set α to∞. Thus this never gives a rate
faster than 1/T since the convergence of right hand side is slower than 1/T in general.

We also note that derived fast rate under low noise condition is valid for all T ≥ 1,
whereas under the strong low noise condition, the exponential convergence only occurs in
the final phase of learning [42, 43].

3.4 Dependence on Regularization Parameter
In this section, we consider a sufficient condition to satisfy Assumption 3.6 and discuss
its validity. First we describe a result from [42], which provides the consistency of gλ as
λ goes to 0.

Proposition 3.1 (Proposition A in [42]). Suppose Assumption 3.2, 3.5, 3.6 hold. Then,
for any ϵ there exists sufficiently small λ > 0 such that ∥gλ − g∗∥L∞(dρX ) ≤ ϵ.

Although gλ converges to g∗ as λ→ 0 as shown in above, specifying its convergence rate
is difficult in general. To derive its rate, first we need the local strong convexity, which is
a strong convexity on a arbitrary compact set.

Assumption 3.7. ϕ : R→ R is µ(U)-strongly convex on a bounded set [−U,U ] ⊂ R, i.e.,

ϕ(ζ1)− ϕ(ζ2)− ϕ′(ζ2)(ζ1 − ζ2) ≥
µ(U)

2
(ζ1 − ζ2)2.

holds for any ζ1, ζ2 ∈ [−U,U ].

For logistic loss, we have ϕ′′(ξ) = 1
2+eξ+e−ξ and thus Assumption 3.7 is satisfied with

µ(U) = 1
2+eU+e−U . Furthermore, to ensure the convergence in terms of L∞-norm, we

impose the norm condition on RKHS H.

Assumption 3.8. There exists 0 ≤ p < 1, and a constant C3 > 0 depends on 0 < δ ≤ 1
that satisfies, for any f ∈ H,

∥f∥L∞(dρX ) ≤ C3∥f∥pH∥f∥
1−p
L2(dρX ).

This condition is common in the analysis of kernel methods ([59, 35]) and has an
important relation to interpolation spaces, see Proposition B.1. If k is Gaussian kernel
and ρX has a density with respect to Lebesgue measure which is uniformly bounded from
0 and ∞, Theorem 4.2 in Chapter 4 shows that it holds with any 0 < p < 1.

Theorem 3.2. Suppose Assumption 3.2, 3.7 and 3.8 holds. Then it holds that

∥gλ − g∗∥L∞(dρX ) ≤ 2pC3∥g∗∥H
(

λ

2µ(R∥g∗∥H)

) 1−p
2

.

Thus Assumption 3.6 is satisfied with κ = 1−p
2 .

Proof is found in Appendix D. Applying these results to Theorem 3.1, we obtain the
following result.



22 Chapter 3 Stochastic Gradient Descent under Low Noise Condition

(a) (b)

Fig. 3.1: Two different situations of the low noise condition.

Corollary 3.1. Suppose Assumption 3.1-3.5, 3.7 and 3.8 holds. Consider Algorithm 4.1

with λ ≈ T− 1
3−p , ηt =

2
λ(γ+t) and αt =

2(γ+t−1)
(2γ+T )(T+1) where γ is a positive value such that

∥g1∥H ≤ (2η1 + 1/λ)GR and η1 ≤ min{1/LR2, 1/2λ}. Then there exists constant C > 0
such that the following inequality holds:

E
[
R(gT+1)

]
−R(g∗) ≤ CT− (α+1)(1−p)

6−2p .

Remark. There are two cases that satisfies the low noise condition as shown in Figure
3.1. If we assume that the conditional probability ρ(1|x) is smooth, the density of ρX must
be vanished around the point where ρ(1|x) crosses the level 1/2 (a). On the other hand,
if we assume ρX has a density which is uniformly bounded away from 0, the conditional
probability ρ(1|x) must take off the level 1/2 abruptly (b). Thus, when we consider this
density condition to satisfy Assumption 3.8, the regression objective ρ(1|x) becomes to be
less likely to be contained in RKHS. In the case where H is a function class with β-Hölder
smoothness, [6] shows the trade-off of smoothness parameter β and low noise parameter
α:

Proposition 3.2 (Proposition 3.4 in [6]). Suppose ρX has a density with respect to
Lebesgue measure which is uniformly bounded away from 0 and ∞ and ρ(1|·) is β-Hölder
smooth. In addition, suppose Assumption 3.6 is satisfied with α such that min{α, αβ} > 1.
Then ρ(1|·) cannot crosses the level 1/2 in the interior of the support of ρX .

We note that there exists a distribution which satisfy the above condition but never
crosses the level 1/2. Example of such distribution ρ is given in [6], such as the one with
ρX is the uniform distribution on a ball centered at 0 in Rd and ρ(1|x) = 1/2−C∥x∥2 with
an appropriate C > 0. In this case, ρ(1|·) belongs to β-Hölder class with arbitrary large
β and Assumption 3.5 is satisfied with α = d/2. Further investigation about the trade-off
between norm condition (Assumption 3.8) and the low noise condition (Assumption 3.5)
is an important future work.
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3.5 Conclusion
In this study, we show that the convergence of the expected classification errors faster than
O(1/n) is achievable with SGD under such a condition. This result is rather surprising,
since it is known that the optimal convergence rates of the expected risk is known to
O(1/

√
n) or O(1/n). Additionally, since we need additional assumptions to derive such

fast rates, we investigate sufficient conditions to satisfy these assumptions and discuss
trade offs between assumptions.

The primal future direction is further investigations and characterizations of such trade
offs. Additionally, it could also be interesting to explore the convergence speed of more
sophisticated variants of SGD, such as stochastic accelerated methods and stochastic
variance reduced methods [52, 30, 20, 2].
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Chapter 4

Learning with SGD and Random

Features under Strong Low Noise

Condition

4.1 Motivation
Kernel methods are commonly used to solve a wide range of problems in machine learn-
ing, as they provide flexible non-parametric modeling techniques and come with well-
established theories about their statistical properties [15, 59, 35]. However, computing
estimators in kernel methods can be prohibitively expensive in terms of memory require-
ments for large datasets.

There are two popular approaches to scaling up kernel methods. The first is sketching,
which reduces data-dimensionality by random projections. A random features method
[47] is a representative, which approximates a reproducing kernel Hilbert space (RKHS)
by a finite-dimensional space in a data-independent manner. The second is stochastic
gradient descent (SGD), which allows data points to be processed individually in each
iteration to calculate gradients. Both of these methods are quite effective in reducing
memory requirements and are widely used in practical tasks.

For the theoretical properties of random features, several studies have investigated the
approximation quality of kernel functions [57, 61, 62], but only a few have considered the
generalization properties of learning with random features. For the regression problem,
its generalization properties in ERM and SGD settings, respectively, have been studied
extensively in [50] and [16]. In particular, they showed that O(

√
n log n) features are suffi-

cient to achieve the usual O(1/
√
n) learning rate, indicating that there is a computational

benefit to using random features.
However, it remains unclear whether or not it is computationally efficient for other

tasks. In [48], the generalization properties were studied with Lipschitz loss functions
under ℓ∞-constraint in hypothesis space, and it was shown that O(n log n) features are
required for O(1/

√
n) learning bounds. Also, in [33], learning with Lipschitz loss and

standard regularization was considered instead of ℓ∞-constraint, and similar results were
attained. Both results suggest that computational gains come at the expense of learning
accuracy if one considers general loss functions.

In this study, learning classification problems with random features and SGD are con-
sidered, and the generalization property is analyzed in terms of the classification error.
Recently, it was shown that the convergence rate of the excess classification error can be
made exponentially faster by assuming the strong low-noise condition [63, 31] that condi-
tional label probabilities are uniformly bounded away from 1/2 [43, 42]. We extend these
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analyses to a random features setting to show that the exponential convergence is achieved
if a sufficient number of features are sampled. Unlike when considering the convergence
of loss function, the resulting convergence rate of the classification error is independent of
the number of features. In other words, an arbitrary small classification error is achievable
as long as there is a sufficient number of random features. So our result suggests that
there is indeed a computational benefit to use random features in classification problems
under the strong low-noise condition.

Remark. Although several studies consider the optimal sampling distributions of features
in terms of the worst-case error [9, 7, 33], we do not explore this direction and treat the
original random features algorithm because these distributions are generally intractable
or require much computational cost to sample [9]. Note that for the case of Gaussian
kernel, a constant time sampling algorithm from the optimized distribution is proposed
in [7], but their proposed distribution depends on the sample size n and the goal of their
analysis is a good approximation of a gram matrix on given data points. In contrast
to this, in our one-pass SGD setting, the sample size cannot be determined beforehand
and SGD is aimed to optimize a population risk, not an empirical risk, so we cannot
apply this distribution directly. Moreover, there is still a gap to apply those analysis to
general kernel functions because they utilized the exponential decaying property about
eigenvalues of Gaussian kernel.

In addition, we should refer to Nyström method [64], which is also a popular method to
scale up kernel methods. In contrast to random features, Nyström method approximates
kernel function in data-dependent way. As a result, similar to calculating an optimized
sampling distribution on random features, Nyström method also requires data points
before actual training starts and needs O(nM) memory, which is more expensive than
O(M) in random features. These are reasons why we dealt with original algorithm of
random features in this study.

Contributions. Our contributions are twofold. First, we analyze the error induced by
the approximation of random features in terms of the distance between the generated
hypothesis including population risk minimizers and empirical risk minimizers when using
general Lipschitz loss functions. Our results can be framed as an extension of the analysis
in [17, 61], which analyzed the error in terms of the distance between empirical risk
minimizers when using a hinge loss.

Second, using the above result, we prove that the exponential convergence rate of the
excess classification error under the strong low-noise condition is achieved if a sufficient
number of features are sampled. Based on this, we show that there is a significant com-
putational gain in using random features rather than a full kernel method for obtaining a
relatively small classification error.

Chapter organization. This chapter is organized as follows. In Section 4.2, the algo-
rithm of random features and SGD treated in this study are briefly reviewed. In Section
4.3, an error analysis of the generated hypothesis using random features is presented, after
which a more sophisticated analysis is given for the case of a Gaussian kernel. Our pri-
mary result describing the exponential convergence rate of the classification error is given
in Section 4.4. Finally, numerical experiments using synthetic datasets are presented in
Section 4.5.
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4.2 Problem Setting
In this section, we provide notations to describe a problem setting and assumptions for
the binary classification and kernel method treated in this study.

4.2.1 Binary Classification Problem

Let X and Y = {−1, 1} be a feature space and the set of binary labels, respectively; ρ
denotes a probability measure on X × Y, by ρX the marginal distribution on X, and by
ρ(·|X) the conditional distribution on Y , where (X,Y ) ∼ ρ.

In the classification problem, our final objective is to choose a discriminant function
g : X → R such that the sign of g(X) is an accurate prediction of Y . Therefore, we intend
to minimize the expected classification error R(g) defined below amongst all measurable
functions:

R(g) = E(X,Y )∼ρ [I(sgn(g(X)), Y )] , (4.1)

where sgn(x) = 1 if x > 0 and −1 otherwise, and I represents 0-1 loss:

I(y, y′) =

{
1 (y ̸= y′)

0 (y = y′).

By definition, g(x) = E[Y |x] = 2ρ(1|x) − 1 minimizes R. However, directly minimizing
(4.1) to obtain the Bayes classifier is intractable because of its non-convexity. Thus, we
generally use the convex surrogate loss l(ζ, y) instead of the 0-1 loss and minimize the
expected risk L(g) of l:

L(g) = E(X,Y )∼ρ [l(g(X), Y )] . (4.2)

In general, the loss function l has a form l(ζ, y) = ϕ(ζy) where ϕ : R→ R is a non-negative
convex function. The typical examples are logistic loss, where ϕ(v) = log(1 + exp(−v))
and hinge loss, where ϕ(v) = max{0, 1 − v}. Minimizing the expected risk (4.2) ensures
minimizing the expected classification (4.1) if l is classification-calibrated [10], which has
been proven for several practically implemented losses including hinge loss and logistic
loss.

4.2.2 Kernel Methods and Random Features

In this study, we consider a reproducing kernel Hilbert space (RKHS) H associated with
a positive definite kernel function k : X ×X → R as the hypothesis space. It is known [3]
that a positive definite kernel k uniquely defines its RKHS H such that the reproducing
property f(x) = ⟨f, k(·, x)⟩H holds for all f ∈ H and x ∈ X , where ⟨·, ·⟩H denotes the
inner product of H. Let ∥ ·∥H denote the norm of H induced by the inner product. Under
these settings, we attempt to solve the following minimization problem:

min
g∈H

L(g) + λ

2
∥g∥2H (4.3)

where λ > 0 is a regularization parameter.
However, because solving the original problem (4.3) is usually computationally ineffi-

cient for large-scale datasets, the approximation method is applied in practice. Random
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features [47] is a widely used method for scaling up kernel methods because of its sim-
plicity and ease of implementation. Additionally, it approximates the kernel in a data-
independent manner, making it easy to combine with SGD. In random features, a kernel
function k is assumed to have the following expansion in some space Ω with a probability
measure τ and a feature function φ : X × Ω→ C:

k(x, y) =

∫
Ω

φ(x, ω)φ(y, ω)dτ(ω). (4.4)

The main idea behind random features is to approximate the integral (4.4) by its Monte-
Carlo estimate:

kM (x, y) =
1

M

M∑
i=1

φ(x, ωi)φ(y, ωi), ωi
i.i.d.∼ τ. (4.5)

For example, if k is a shift invariant kernel, by Bochner’s theorem (Proposition A.2), the

expansion (4.4) is achieved with φ(x, ω) = C ′eiω
⊤x, where C ′ is a normalization constant.

Then, the approximation (4.5) is called random Fourier features [47], which is the most
widely used variant of random features.
We denote the RKHS associate with k and kM by H and HM , respectively. These spaces
then admit the following explicit representation [9, 8]:

H =

{∫
Ω

β(ω)φ(·, ω)dτ(ω)
∣∣∣∣ β ∈ L2(dτ)

}
,

HM =

{
M∑
i=1

βi√
M
φ(·, ωi)

∣∣∣∣∣ |βi| <∞
}
.

We note that the approximation space HM is not necessarily contained in the original
space H. For g ∈ H and h ∈ HM , the following RKHS norm relations hold:

∥g∥H = inf

{
∥β∥L2(dτ)

∣∣∣∣ g =

∫
Ω

β(ω)φ(·, ω)dτ(ω)
}
,

∥h∥HM
= inf

{
∥β∥2

∣∣∣∣∣ h =

M∑
i=1

βi√
M
φ(·, ωi)

}
.

As a result, the problem (4.3) in the approximation space HM is reduced to the following
generalized linear model:

min
β∈RM

L(β⊤ϕM ) +
λ

2
∥β∥22 (4.6)

where ϕM is a feature vector:

ϕM =
1√
M

[φ(·, ω1), . . . , φ(·, ωM )]⊤.

In this paper, we consider solving the problem (4.6) using the averaged SGD. The details
are discussed in the following section.
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4.2.3 Averaged Stochastic Gradient Descent

SGD is the most popular method to solve large scale learning problems. In this section,
we discuss a specific form of SGD following Section 2.2.2. For the optimization problem
(4.6), its gradient with respect to β is given as follows:

E
[
∂ζ l(β

⊤ϕM (X), Y )ϕM (X) + λβ
]
,

where ∂ζ is a partial derivative with respect to the first variable of l. Thus, the stochastic
gradient with respect to β is given by ∂ζ l(β

⊤ϕM (X), Y )ϕM (X) + λβ. We note that the
update on the β parameter corresponds to the update on the function space HM instead
on H as introduced in Section 2.2.2, because a gradient on HM is given by

E
[
∂ζ l(β

⊤ϕM (X), Y )ϕM (X) + λβ
]⊤
ϕM .

The algorithm of random features and averaged SGD is described in Algorithm 4.1.

Algorithm 4.1 Random Features + SGD

Input: number of features M , regularization parameter λ, number of iterations T , learn-
ing rates {ηt}Tt=1, averaging weights {αt}T+1

t=1

Output: classifier gT+1

Randomly draw feature variables ω1, . . . , ωM ∼ τ
Initialize β1 ∈ RM

for t = 1, . . . , T do
Randomly draw samples (xt, yt) ∼ ρ
βt+1 ← βt − ηt

(
∂ζ l(β

⊤
t ϕM (xt), yt)ϕM (xt) + λβt

)
end for
βT+1 =

∑T+1
t=1 αtβt

return gT+1 = β
⊤
T+1ϕM

As introduced in Section 2.2.2, we set the learning rate and the averaging weight as
follows:

ηt =
2

λ(γ + t)
, αt =

2(γ + t− 1)

(2γ + T )(T + 1)
,

where γ is an offset parameter for the time index. We note that an averaged iterate βt

can be updated iteratively as follows:

β1 = β1,

βt+1 = (1− θt)βt + θtβt+1, θt =
2(γ + t)

(t+ 1)(2γ + t)
.

Using this formula, we can compute the averaged output without storing all internal
iterate (βt)

T+1
t=1 .

4.2.4 Computational Complexity

If we assume the evaluation of a feature map φ(x, ω) to have a constant cost, one iteration
in Algorithm 4.1 requires O(M) operations. As a result, one pass SGD on n samples
requires O(Mn) computational time. On the other hand, the full kernel method without
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approximation requires O(n) computations per iteration; thus, the overall computation
time is O(n2), which is much more expensive than random features.

For the memory requirements, random features needs to store M coefficients, and it
does not depend on the sample size n. On the other hand, we have to store n coefficients
in the full kernel method, so it is also advantageous to use random features in large-scale
learning problems.

4.3 Error Analysis of Random Features
Our primary purpose here is to bound the distance between the hypothesis generated
by solving the problems in each space H and HM . Population risk minimizers in spaces
H,HM are defined as below:

gλ = argmin
g∈H

(
L(g) + λ

2
∥g∥2H

)
,

gM,λ = argmin
g∈HM

(
L(g) + λ

2
∥g∥2HM

)
.

The uniqueness of minimizers is guaranteed by the regularization term.
First, the L∞(dρX )-norm is bound between gλ and gM,λ when the loss function l(·, y)

is Lipschitz continuous. Then, a more concrete analysis is provided when k is a Gaussian
kernel.

4.3.1 Error analysis for population risk minimizers

Before beginning the error analysis, some assumptions about the loss function and kernel
function are imposed.

Assumption 4.1. l(·, y) is convex and G-Lipscitz continuous, that is, there exists G > 0
such that for any ζ, ζ ′ ∈ R and y ∈ Y,

|l(ζ, y)− l(ζ ′, y)| ≤ G|ζ − ζ ′|.

This assumption implies G-Lipschitzness of L with respect to the L2(dρX ) norm, be-
cause

|L(g)− L(h)| ≤ G
∫
|g(x)− h(x)|dρX (x)

≤ G∥g − h∥L2(dρX )

for any g, h ∈ L2(dρX ). For several practically used losses, such as logistic loss or hinge
loss, this assumption is satisfied with G = 1.

To control continuity and boundedness of the induced kernel, the following assumptions
are required:

Assumption 4.2. The function φ is continuous and there exists R > 0 such that
|φ(x, ω)| ≤ R for any x ∈ X , ω ∈ Ω.

If k is Gaussian and φ is its random Fourier features, it is satisfied with R = 1. This
assumption implies supx,y∈X k(x, y) ≤ R2, supx,y∈X kM (x, y) ≤ R2 and it leads to an
important relationship R∥ · ∥H ≥ ∥ · ∥L∞(X ), R∥ · ∥HM

≥ ∥ · ∥L∞(X ).
For the two given kernels k and kM , k + kM is also a positive definite kernel, and its

RKHS includes H and HM . The last assumption imposes a specific norm relationship in
its combined RKHS of H and HM .
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Assumption 4.3. Let H+
M be RKHS with the kernel function k+ kM . Then there exists

0 ≤ p < 1, and a constant C(δ) > 0 depends on 0 < δ ≤ 1 that satisfies, for any f ∈ H+
M ,

∥f∥L∞(dρX ) ≤ C(δ)∥f∥pH+
M

∥f∥1−p
L2(dρX )

with probability at least 1− δ.

For a fixed kernel function, the Assumption 4.3 is a commonly used condition in an
analysis of kernel methods [59, 35]. It is satisfied, for example, that the eigenfunctions of
the kernel are uniformly bounded and the eigenvalues {µi}i decay at the rate i−1/p [35].
In Theorem 4.2, specific p and C(δ) that satisfy the condition for the case of a Gaussian
kernel and its random Fourier features approximation are derived.

Here, we introduce our primary result, which bounds the distance between gλ and gM,λ

in terms of L∞(dρX )-norm. The complete statement, including proof and all constants,
are found in Appendix E.

Theorem 4.1 (Simplified.). Under Assumption 4.1-4.3, with probability at least 1 − 2δ
with respect to the sampling of features, the following inequality holds:

∥gλ − gM,λ∥L∞(dρX ) ≲
(
R4 log R

δ

M

)min{(1−p)/4,1/8}
C(δ)RG3/4∥g∗∥H

λ3/4
.

The resulting error rate is O(M−min{(1−p)/4,1/8}). It can be easily shown that a consistent
error rate of O(M−1/8) is seen for L2(dρX )-norm without Assumption 4.3.

Comparison to previous results. In [17, 61], the distance between empirical risk
minimizers of SVM (i.e., l is hinge loss) were studied in terms of the error induced by Gram
matrices. Considering K and KM to be Gram matrices of kernel k and kM , respectively,

they showed that ∥gλ−gM,λ∥L∞(dρX ) ≲ O(∥K−KM∥
1/4
op ), where ∥·∥op is an operator norm,

defined in Chapter 1. Because the Gram matrix can be considered as the integral operator
on the empirical measure, we can apply Lemma A.1 and obtain ∥K−KM∥op ≲ O(M−1/2),

so the resulting rate is O(M−1/8). This coincides with our result, because when ρX is an
empirical measure, Assumption 3 holds with p = 0. From this perspective, our result is
an extension of these previous results, because we treat the more general Lipschitz loss
function l and general measure ρX including empirical measure.
In [50, 16], the case of squared loss was studied. In particular, in Lemma 8 of [50], the L2

distance between gλ and gM,λ is shown as O(M−1/2) (without decreasing λ). While this
is a better rate than ours, our theory covers a wider class of loss functions, and a similar
phenomenon is observed in the case of empirical risk minimizers for the squared loss and
hinge loss [17].
In [9], approximations of functions inH by functions inHM were considered, but this result
cannot be applied here because gM,λ is not the function closest to gλ in HM . Finally, we
note that our result cannot be obtained from the approximation analysis of Lipschitz loss
functions [48, 33], where the rate was shown to be O(M−1/2) under several assumptions,
because the closeness of the loss values does not imply that of the hypothesis.

4.3.2 Further analysis for Gaussian kernels

The following theorem shows that if k is a Gaussian kernel and kM is its random Fourier
features approximation, then the norm condition in Assumption 4.3 is satisfied for any
0 < p < 1.
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Theorem 4.2. Assume supp(ρX ) ⊂ Rd is a bounded set and ρX has a density with respect
to Lebesgue measure, which is uniformly bounded away from 0 and ∞ on supp(ρX ). Let k
be a Gaussian kernel and H be its RKHS; then, for any m ≥ d/2, there exists a constant
Cm,d > 0 such that

∥f∥L∞(dρX ) ≤ Cm,d∥f∥
d/2m
H ∥f∥1−d/2m

L2(dρX ) (4.7)

for any f ∈ H. Also, for any M ≥ 1, let kM be a random Fourier features approximation
of k with M features and H+

M be a RKHS of k+ kM . Then, with probability at least 1− δ
with respect to a sampling of features,

∥f∥L∞(dρX ) ≤ Cm,d

(
1 +

1

δ

)d/4m

∥f∥d/2mH+
M

∥f∥1−d/2m
L2(dρX ) (4.8)

for any f ∈ H+
M .

We note that the norm relation of the Gaussian RKHS (4.7) is a known result in [59]
and our analysis extends this to the combined RKHS H+

M . The proof is based on the
following fact:

Let us denote supp(ρX ) by X ′. First, from [59] we have[
L2(X ′),Wm(X ′)

]
d/2m,1

= B
d/2
2,1 (X ′)

and there exists a constant C1 > 0 such that

∥f∥[L2(X ′),Wm(X ′)]d/2m,1
≤ C1∥f∥

d/2m
Wm(X ′)∥f∥

1−d/2m
L2(X ′) ,

where Wm(X ′) and B
d/2
2,1 (X ′) denote Sobolev and Besov space, respectively, and [E,F ]θ,r

denotes real interpolation of Banach spaces E and F (see [58]). Also, by Sobolev’s em-

bedding theorem for Besov space, B
d/2
2,1 (X ′) can be continuously embedded in L∞(X ′).

Finally, from the condition on ρX , there exists a constant C2 > 0 such that

∥f∥L∞(dρX ) = ∥f∥L∞(X ′),

∥f∥L2(dρX ) ≥ C2∥f∥L2(X ′).

Therefore, if it can be shown that RKHS H+
M is continuously embedded in Wm(X ′), the

norm relation (4.8) holds. The complete proof is found in Appendix E.

Remark. Although we consider k as Gaussian, the statement itself holds if the probability
measure τ has finite every order moments (see proof in Appendix E). In particular, for a
shift-invariant kernel k, if ψ(x− y) = k(x, y) belongs to the Schwartz class (including the
case of a Gaussian kernel), τ (Fourier transform of ψ) also belongs to it, indicating that
every moment is finite from the property of the Schwartz class [65] and the statement of
Theorem 4.2 holds.

Using this theorem, it can be shown that in the case of a Gaussian kernel and its
random Fourier features approximation, Assumption 4.3 is satisfied with p = 1/2 and
C(δ) = Cd,d(1 + 1/δ)1/4, and the resulting rate in Theorem 4.1 is O(M−1/8).

4.4 Main Results
In this section, we show that learning classification problems with SGD and random
features achieve the exponential convergence of the expected classification error under
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certain conditions. Before providing our results, several assumptions are imposed on the
classification problems and loss function.

The first is the smoothness of the loss function.

Assumption 4.4. l(·, y) is differentiable and L-Lipschitz smooth. That is, for any ζ, ζ ′ ∈
R and y ∈ Y,

|∂ζ l(ζ, y)− ∂ζ l(ζ ′, y)| ≤ L|ζ − ζ ′|.

This yields LR2-smoothness of l with respect to ∥ ·∥HM
norm from the same arguments

as Section 2.3. The second is the margin condition on the conditional label probability,
which is introduced in Section 2.1.

Assumption 4.5. The strong low-noise condition holds:

∃δ ∈ (0, 1/2) , |ρ(Y = 1|x)− 1/2| > δ (ρX -a.s.)

The third is the condition on the link function h∗ [10, 66], which connects the hypothesis
space and the probability measure:

h∗(µ) = argmin
α∈R

{µϕ(α) + (1− µ)ϕ(−α)} .

Its corresponding value is denoted by l∗:

l∗(µ) = min
α∈R
{µϕ(α) + (1− µ)ϕ(−α)} .

It is known that l∗ is a concave function [66]. Although h∗(µ) may not be uniquely
determined nor well-defined in general, the following assumption ensures these properties.

Assumption 4.6. ρ(1|X) takes values in (0, 1), ρX -almost surely; ϕ is differentiable
and h∗ is well-defined, differentiable, monotonically increasing, and invertible over (0, 1).
Moreover, it follows that

sgn(µ− 1/2) = sgn(h∗(µ)).

For logistic loss, h∗(µ) = log(µ/(1 − µ)), and the above condition is satisfied. Next,
following [66], we introduce Bregman divergence for concave function l∗ to ensure the
uniqueness of Bayes rule g∗:

dl∗(η1, η2) = −l∗(η2) + l∗(η1) + l′∗(η1)(η2 − η1).

Assumption 4.7. Bregman divergence dl∗ derived by l∗ is positive, that is, dl∗(η1, η2) = 0
if and only if η1 = η2. For the expected risk L, a unique Bayes rule g∗ (up to zero measure
sets) exists in H.

For logistic loss, it is known that dl∗ coincides with Kullbuck-Leibler divergence, and
thus, the positivity of the divergence holds. If ϕ is differentiable and h∗ is differentiable
and invertible, the excess risk can be expressed using dl∗ [66]:

L(g)− L(g∗) = EX [dl∗(h
−1
∗ (g(X)), ρ(1|X))].

So, combining Assumptions 4.6 and 4.7 implies that Bayes rule g∗ is equal to h∗(ρ(1|X)),
ρX -almost surely and contained in the original RKHS H.

Finally, we introduce the following notation:

m(δ) = max{h∗(0.5 + δ), |h∗(0.5− δ)|}.

Using this notation, Assumption 4.5 can be reduced to the Bayes rule condition, that is,
|g∗(X)| ≥ m(δ), ρX -almost surely. For logistic loss, we have m(δ) = log((1+2δ)/(1−2δ)).
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Remark. As in Section 3, we can also impose Lipschitz continuity on h−1
∗ instead of

specifying m(δ). However, the use of Lipschitz continuity would yield looser bounds since
h−1
∗ is generally almost flat when an input is far away from 0 and a deviations on such a

large value does not affect the corresponding probability value.

Under these assumptions and notations, the exponential convergence of the expected
classification error is shown.

Theorem 4.3. Suppose Assumptions 4.1–4.7 hold. There exists a sufficiently small λ > 0
such that the following statement holds:
Taking the number of random features M that satisfies

M ≳
(
R4C4(δ′)G3∥g∗∥4H

λ3m4(δ)

)max{ 1
1−p ,2}

R4 log
R

δ′
.

Consider Algorithm 4.1 with ηt =
2

λ(γ+t) and αt =
2(γ+t−1)

(2γ+T )(T+1) where γ is a positive value

such that ∥g1∥HM
≤ (2η1 + 1/λ)GR and η1 ≤ min{1/LR2, 1/2λ}. Then, with probability

1− 2δ′, for sufficiently large T such that

max

{
36G2R2

λ2(2γ + T )
,
γ(γ − 1)∥g1 − gM,λ∥2HM

(2γ + T )(T + 1)

}
≤ m2(δ)

64R2
,

we have the following inequality for any t ≥ T :

E
[
R(gt+1)−R(E[Y |x])

]
≤ 2 exp

(
−λ

2(2γ + t)m2(δ)

212 · 9G2R4

)
.

The complete statement and proof are given in Appendix E. We note that although a
certain number of features are required to achieve the exponential convergence, the result-
ing rate does not depend on M . In contrast to this, when one considers the convergence
rate of the loss function, its rate depends on M in general [50, 16, 48, 33]. From this
fact, we can show that random features can save computational cost in a relatively small
classification error regime. A detailed discussion is presented below.

As a corollary, we show a simplified result when learning with random Fourier features
approximation of a Gaussian kernel and logistic loss, which can be obtained by setting
m(δ) = log((1 + 2δ)/(1 − 2δ)), R = G = 1 and L = 1/4 in Theorem 4.3 and applying
Theorem 4.2.

Corollary 4.1. Assume supp(ρX ) ⊂ Rd is a bounded set and ρX has a density with respect
to Lebesgue measure, which is uniformly bounded away from 0 and ∞ on supp(ρX ). Let
k be a Gaussian kernel and l be logistic loss. Under Assumption 4.5-4.7, there exists a
sufficiently small λ > 0 such that the following statement holds:
Taking a number of random features M that satisfies

M ≳
((

1 + 1
δ′

)
∥g∗∥4H

λ3 log4 1+2δ
1−2δ

)2

log
1

δ′
.

Consider Algorithm 4.1 with ηt =
2

λ(γ+t) and αt =
2(γ+t−1)

(2γ+T )(T+1) where γ is a positive value

such that ∥g1∥HM
≤ (2η1 + 1/λ) and η1 ≤ min{4, 1/2λ}. Then, with probability 1 − 2δ′,

for a sufficiently large T such that

max

{
36

λ2(2γ + T )
,
γ(γ − 1)∥g1 − gM,λ∥2HM

(2γ + T )(T + 1)

}
≤

log2 1+2δ
1−2δ

64
,
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we have the following inequality for any t ≥ T :

E
[
R(gt+1)−R(E[Y |x])

]
≤ 2 exp

(
−λ

2(2γ + t)

212 · 9
log2

1 + 2δ

1− 2δ

)
.

Computational viewpoint. As shown in Theorem 4.3, once a sufficient number of fea-
tures are sampled, the convergence rate of the excess classification error does not depend
on the number of features M . This is unexpected because when considering the conver-
gence of the loss function, the approximation error induced by random features usually
remains [50, 33, 48]. Thus, to obtain the best convergence rate, we have to sample more
M as the sample size n increases.

From this fact, it can be shown that to achieve a relatively small classification error,
learning with random features is indeed more computationally efficient than learning with
a full kernel method without approximation. As shown in Section 4.2.4, if one runs SGD
in Algorithm 4.1 with more than M iterations, both the time and space computational
costs of a full kernel method exceed those of random features. In particular, if one can
achieve a classification error ϵ such that

ϵ ≲ exp
(
− log2max{(1+p)/(1−p),3}m(δ)

)
,

then the required number of iterations n exceeds the required number of features M in
Theorem 4.3, and the overall computational cost become larger in a full kernel method.
Theoretical results which suggest the efficiency of random features in terms of generaliza-
tion error have only been derived in the regression setting [50, 16]; this is the first time
the superiority of random features has been demonstrated in the classification setting.
Moreover, this result shows that an arbitrary small classification error is achievable as
long as there is a sufficient number of random features unlike the regression setting where
a required number of random features depend on the target accuracy.

4.5 Experiments
In this section, the behavior of the SGD with random features studied on synthetic
datasets is described. We considered logistic loss as a loss function, a Gaussian ker-
nel as an original kernel function, and its random Fourier features as an approxima-
tion method. Two-dimensional synthetic datasets were used, as shown in Figure 4.1.
The dataset support is composed of four parts: [−1.0,−0.1]× [−1.0,−0.1], [−1.0,−0.1]×
[0.1, 1.0], [0.1, 1.0]× [−1,−0.1], [0.1, 1.0]× [0.1, 1.0]. For two of them, the conditional prob-
ability is ρ(1|X) = 0.8, and for the other two, ρ(1|X) = 0.2. This distribution satisfies
the strong low-noise condition with δ = 0.3. For hyper-parameters, we set γ = 500 and
λ = 0.001. The averaged stochastic descent was run 100 times with 12,000 iterations and
the classification error and loss function were calculated on 100,000 test samples. The
average of each run is reported with standard deviations.

First, the learning curves of the expected classification error and the expected risk are
drawn when the number of features M = 1000, as shown in Figure 4.2. Our theoretical
result suggests that with sufficient features, the classification error converges exponentially
fast, whereas the loss function converges sub-linearly. We can indeed observe a much faster
decrease in the classification error (left) than in the loss function (right).

Next, we show the learning curves of the expected classification error when the number
of features are varied as M = 100, 200, 500, 1000 in Figure 4.3. We can see that the exact
convergence of the classification error is not attained with relatively few features such as
M = 100, which also coincides with our results.
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Fig. 4.1: Subsample of data used in the experiment.
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Fig. 4.2: Learning curves of the expected classification error (left) and the expected risk
(right) by averaged SGD with 1000 features.

Finally, the convergence of the classification error is compared in terms of computational
cost between the random features model with M = 500, 1000 and the full kernel model
without approximation. In Figure 4.4, the learning curves are drawn with respect to
the number of parameter updates; the full kernel model requires increasing numbers of
updates in later iterations, whereas the random features model requires a constant number
of updates. It can be observed that both random features models require fewer parameter
updates to achieve the same classification error than the full kernel model for a relatively
small classification error. This implies that random features approximation is indeed
computationally efficient under a strong low-noise condition.



36 Chapter 4 Learning with SGD and Random Features under Strong Low Noise Condition

0 2000 4000 6000 8000 10000 12000
iteration

0.200

0.205

0.210

0.215

0.220

er
ro

r

full
M=100
M=200
M=500
M=1000

Fig. 4.3: Comparison of learning curves of the expected classification error with varying
numbers of features.
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Fig. 4.4: Comparison of learning curves with respect to number of parameter updates.

4.6 Conclusion
This study shows that learning with SGD and random features could achieve exponential
convergence of the classification error under a strong low-noise condition. Unlike when
considering the convergence of a loss function, the resulting convergence rate of the classi-
fication error is independent of the number of features, indicating that an arbitrary small
classification error is achievable as long as there is a sufficient number of random features.
Our results suggest, for the first time, that random features is theoretically computa-
tionally efficient even for classification problems under certain settings. Our theoretical
analysis has been verified by numerical experiments.

One possible future direction is to extend our analysis to general low-noise conditions to
derive faster rates than O(1/

√
n), as in [43] in the case of the squared loss. It could also be

interesting to explore the convergence speed of more sophisticated variants of SGD, such
as stochastic accelerated methods and stochastic variance reduced methods [52, 30, 20, 2].
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Chapter 5

Conclusion

5.1 Concluding Remarks
In this thesis, we have analyzed the validity of two approximation methods in binary
classification problems on RKHS under the low noise condition. The first is SGD, which
is an approximation from optimization perspectives. In Chapter 3, we showed that SGD
can achieve a faster rate than O(1/n) under the general low noise condition. It can be
seen as interpolation of recent studies [43, 42], that show the exponential convergence
under the strong low noise condition and conventional results [10, 66] that reveals the
connection between the convergence rate of loss functions and that of classification errors
under the general setting. In Chapter 4, we considered applying random features, which is
the second approximation from the modeling perspectives. We showed that the required
number of features to get an exact convergence is independent of sample size under the
strong low noise condition, thus it means there is indeed a computational benefit to apply
random features approximation. We believe these results give a better explanation of the
practical success of these widely used approximation methods.

5.2 Future Perspective
Currently, we are aware of at least three future extensions of these results. First, it is
important to consider different hypothesis spaces. Throughout this thesis, we consider
kernel methods as a learning model, whose hypothesis space is RKHS. Although these
models are general as linear estimators, it is somewhat inadequate when considering the
great success of nonlinear estimators, in particular, deep neural networks (DNN). Recent
studies have analyzed two-layer neural networks (i.e., those with one hidden layer) with
over-parametrization where the number of neurons exceeds the sample size, and revealed
the connection to kernel models [28, 23, 5]. Such an interpretation is called neural tangent
kernel (NTK) and convergence properties of gradient descent on such models have been
extensively studied for both regression and classification settings. Then one natural di-
rection is to extend our analysis on classification problems under the low noise condition
to such models optimized by SGD. These extensions may contribute to an understanding
of the superior performance of SGD on DNN.

Secondly, it is worth applying more sophisticated variants of SGD to our analysis.
Specifically, it can improve the stability of SGD with the use of variance reduction tech-
nique [30, 20, 41]. In particular, [26] considers the streaming (online) version of the
variance reduction technique and analyze its generalization properties. These analyses
may yield a better convergence of the expected classification error under the low noise
condition. Other refinements, such as acceleration [2, 37] also have the possibility to
improve the convergence.
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Lastly, investigating whether it is possible or not to derive generalization error on clas-
sification problems optimized by SGD without regularization terms is also of great signifi-
cance. Some recent studies [22, 43] shows that the optimal rates of least squares regression
on RKHS is achievable without regularization terms by using step sizes instead of reg-
ularization parameter to balance generalization and optimization errors. Although our
analysis heavily relies on the strong convexity of the objective, this extension, if possible,
may give a better explanation of the superiority of SGD.
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tures. In Advances in Neural Information Processing Systems, pages 1144–1152, 2015.

[58] Ingo Steinwart and Andreas Christmann. Support Vector Machines. Springer Science
& Business Media, 2008.

[59] Ingo Steinwart, Don R Hush, and Clint Scovel. Optimal rates for regularized least
squares regression. In Conference on Learning Theory, pages 79–93, 2009.

[60] Ingo Steinwart and Clint Scovel. Mercer’s theorem on general domains: on the
interaction between measures, kernels, and RKHSs. Constructive Approximation,
35(3):363–417, 2012.

[61] Dougal J Sutherland and Jeff Schneider. On the error of random Fourier features. In
Conference on Uncertainty in Artificial Intelligence, pages 862–871, 2015.
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A

Reproducing Kernel Hilbert Space

(RKHS)

In this section, we introduce some properties of RKHS. For more thoroughly introduction,
we refer to Chapter 4 in [58] and [22].

Definition of RKHS
Firstly, we introduce a reproducing kernel Hilbert space (RKHS), which is widely adapted
in a non-parametric statistical learning. Here we define a positive definite kernel.

Definition A.1 (Positive definite kernel). k : X ×X → R is called positive definite kernel
if for any finite set {x1, . . . , xn} ⊂ X , the n × n matrix whose (i, j) entry is k(xi, xj) is
positive semi-definite.

Example. The following kernels are positive definite:

• Polynomial kernel on X = Rd with a integer degree parameter j ≥ 0:

k(x1, x2) = (1 + x1 · x2)j

• Binomial kernel on X = {x ∈ Rd | ∥x∥1 < 1} with a integer degree parameter j > 0:

k(x1, x2) = (1− x1 · x2)−j

• Gaussian kernel on X = Rd with a band width parameter σ > 0:

k(x1, x2) = exp(−∥x1 − x2∥22/σ2)

• Laplacian kernel on X = Rd with a band width parameter σ > 0:

k(x1, x2) = exp(−∥x1 − x2∥2/σ)

For every positive definite kernel k, a Hilbert space spanned by k is defined:

Definition A.2 (Reproducing kernel Hilbert space (RKHS)). A reproducing kernel
Hilbert space H associates with a positive definite kernel k : X ×X → R is a Hilbert space
with inner product ⟨·, ·⟩H satisfying the following properties:

1. k(·, x) ∈ H for any x ∈ X .
2. f(x) = ⟨f, k(·, x)⟩H for any x ∈ X and f ∈ H.
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It is known that every positive definite kernel has a unique RKHS and every RKHS
has a unique reproducing kernel (Theorem 4.20, 4.21 in [58]). Here we introduce some
facts and theorems which is related to the thesis. The following proposition characterizes
a RKHS of sum of two kernel functions.

Proposition A.1 (RKHS of sum of kernels). Let k1, k2 : X ×X → R be positive definite
kernels and H1 and H2 be their associated RKHSs, respectively. Then, k1 + k2 is also a
positive definite kernel and its RKHS H+ is given by

H+ = {f1 + f2 | f1 ∈ H1, f2 ∈ H2}
∥f∥H+ = inf{∥f1∥H1

+ ∥f2∥H2
| f = f1 + f2, f1 ∈ H1, f2 ∈ H2}.

The next proposition shows an important characteristic of shift-invariant kernels such
as Gaussian and Laplacian kernel introduced above, and it is utilized in kernel approxi-
mations by random Fourier features [47] in Chapter 4.

Proposition A.2 (Bochner’s theorem [65]). Let k : Rd×Rd → R be a kernel and assume
that there exists ψ : Rd → R such that k(x1, x2) = ψ(x1 − x2) for all x1, x2 ∈ Rd. Then k
is positive definite if and only if there exists a unique finite Borel measure µ on Rd such
that

ψ(t) =

∫
Rd

eit·λdµ(λ).

Characterization of RKHS by integral operators
It is well known [58] that RKHS can be characterized using an integral operator associated
with a kernel function. In this section, we introduce these connection used in the analysis.
We note that although it is common for analyses of kernel methods to assume X is
compact, ρX has the full support and k is continuous because under such assumptions
we utilize Mercer’s theorem to characterize RKHS [19, 3], such an assumption may not
be adopted under classification problems we consider in the thesis. In particular, when
the low noise condition is considered, ρX may not have full support. So we explain some
basic properties of reproducing kernel Hilbert space (RKHS) under more general settings
based on [22, 60].
First we impose a boundedness on k as same as previous sections.

Assumption A.1. There exists R > 0 such that k(x, x) ≤ R2 for any x ∈ X .

For given kernel function k and its RKHSH, we define a covariance operator Σ : H → H
as follows:

⟨f,Σg⟩H = ⟨f, g⟩L2(dρX ), ∀f, g ∈ H.

It is well-defined through Riesz’ representation theorem [65]. Using reproducing property,
we have

Σ = EX∼ρX [k(·, X)⊗H k(·, X)],

(Σf)(z) = EX∼ρX [f(X)k(X, z)], ∀f ∈ H. (A.1)

where expectation is defined via a Bochner integration, which is an extension of Lebesgue
integration to general Banach spaces [65]. From the representation (A.1), we can extend
the covariance operater to f ∈ L2(dρX ). We denote this by T : L2(dρX ) → L2(dρX ) as
follows:

(Tf)(z) = EX∼ρX [f(X)k(X, z)], ∀f ∈ L2(dρX ).
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Im(T ) ⊂ L2(dρX ) is verified since k(·, x) is uniformly bounded by Assumption A.1. In
addition, we denote a set of square integral function itself (without dividing by almost
sure equivalence class) by L2(dρX ). Then we define the extended covariance operator
T : L2(dρX )→ L2(dρX ) as follows:

(T f)(z) = EX∼ρX [f(X)k(X, z)], ∀f ∈ L2(dρX ).

Here we present some properties of these covariance operators Σ, T, T from Appendix I
in [22].

Proposition A.3.

1. Σ is self-adjoint, continuous operator and Ker(Σ) = {f ∈ H | ∥f∥L2(dρX ) = 0}.
2. T is continuous, self-adjoint, positive semi-definite operator.
3. T 1/2 : Ker(T )⊥ → Ker(Σ)⊥ is well-defined and an isometry. In particular, for

any f ∈ Ker(Σ)⊥ ⊂ H, there exists g ∈ Ker(T )⊥ ⊂ L2(dρX ) such that ∥f∥H =
∥g∥L2(dρX ).

Thus, a square root of an integral operator T represents an isometric correspondence
between L2(dρX ) and H up to zero measure sets. Next, we consider the case where a
kernel k is represented as a feature expansion form as introduced in Chapter 4.

Assumption A.2. There exists φ : X × Ω → C and a probability measure τ on Ω such
that the following inequality holds:

k(x, y) =

∫
Ω

φ(x, ω)φ(y, ω)dτ(ω). (A.2)

Then, we can write T using feature expansion (A.2) as

T = Eω∼τ [φ(·, ω)⊗L2(dρX ) φ(·, ω)], (A.3)

since it holds that

(Tf)(z) = EX∼ρX [f(X)Eω∼τ [φ(X,ω)φ(z, ω)]]

= Eω∼τ [⟨f, φ(·, ω)⟩L2(dρX )φ(z, ω)].

Moreover, define a finite dimensional approximation of (A.2) as

kM (x, y) =

M∑
i=1

φ(x, ωi)φ(y, ωi), ωi ∼ τ.

and denote its RKHS by HM and extended covariate operators by TM : L2(dρX ) →
L2(dρX ) and TM : L2(dρX )→ L2(dρX ). As with (A.3), we have

TM =
1

M

M∑
i=1

φ(·, ωi)⊗L2(dρX ) φ(·, ωi),

E[TM ] = T.

In the following section, we show some inequalities about the approximation error of H
by HM , which is used to derive Theorem 4.1.
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Finite dimensional approximation of RKHS
The following inequality shows that the difference between the square root of two self-
adjoint positive semi-definite operators is bounded by the square root of the difference of
them.

Proposition A.4. Let V be a separable Hilbert space. For any compact, positive semi-

definite, self-adjoint operators S, S̃ : V → V , the following inequality holds:

∥S1/2 − S̃1/2∥op ≤ ∥S − S̃∥
1/2
op (A.4)

Proof. Since S1/2− S̃1/2 is also a compact and self-adjoint operator, it allows eigendecom-
position of itself. Then let λmax be the eigenvalue with largest absolute value and v be

the corresponding normalized eigenfunction of S1/2 − S̃1/2, i.e.,

(S
1/2 − S̃1/2)v = λmaxv.

Since (A.4) obviously holds if S = S̃, we can assume that λmax > 0 without loss of
generality. Because S1/2 is positive semi-definite, we have

⟨v, Sv⟩V = ∥S1/2v∥2V
= ∥S̃1/2v + λmaxv∥2V
= ⟨v, S̃v⟩V + λ2max + 2λmax⟨v, S

1/2v⟩V
≥ ⟨v, S̃v⟩V + λ2max.

Thus we have

∥S − S̃∥op ≥ ⟨v, (S − S̃)v⟩V
≥ λ2max = ∥S1/2 − S̃1/2∥2op,

which completes the proof.

The following inequality is a generalization of the Bernstein inequality to random op-
erators on separable Hilbert space and used in Lemma A.1 to derive the concentration of
integral operators.

Proposition A.5 (Proposition 3 in [50]). Let V be a separable Hilbert space and let
X1, X2, . . . , Xn be a sequence of independent and identically distributed self-adjoint ran-
dom operators on V . Assume that EXi = 0 and there exists B > 0 such that ∥Xi∥op ≤ B
almost surely for any 1 ≤ i ≤ n. Let S be the positive operator such that EX2

i ≤ S. Then
for any δ ∈ (0, 1], the following inequality holds with probability at least 1− δ:∥∥∥∥∥ 1n

n∑
i=1

Xi

∥∥∥∥∥
op

≤ 2Bβ

3n
+

√
2∥S∥opβ

n
,

where β = log 2trS
∥S∥opδ

.

The next lemma provides a probabilistic bounds about the difference of the two covariate
operators T and TM .



48 A Reproducing Kernel Hilbert Space (RKHS)

Lemma A.1. For any δ ∈ [0, 1), the following inequality holds with probability at least
1− δ:

∥T − TM∥op ≤ R
2

(
2β

3M
+

√
2β

M

)

where β = log 2R2

∥T∥opδ
.

Proof. Let Xi = T −φ(·, ωi)⊗L2(dρX ) φ(·, ωi). Then T −TM = 1
M

∑M
i=1Xi. Also, we have

EXi = 0,

Xi ⪯ T ⪯ R2I,

Xi ⪰ −φ(·, ωi)⊗L2(dρX ) φ(·, ωi) ⪰ −R2I,

||Xi||op ≤ R2, as a result of two previous inequalities,

EX2
i = E

[
φ(·, ωi)⊗L2(dρX ) φ(·, ωi)

]2 − T 2

⪯ E
[
φ(·, ωi)⊗L2(dρX ) φ(·, ωi)

]2
⪯ E

[
⟨φ(·, ωi), φ(·, ωi)⟩L2(dρX )φ(·, ωi)⊗L2(dρX ) φ(·, ωi)

]
⪯ R2T,

trT =

∫
X
k(x, x)dρX (x) ≤ R2.

Let B = R2 and S = R2T in Proposition A.5, we have

∥T − TM∥op =

∥∥∥∥∥ 1

M

M∑
i=1

Xi

∥∥∥∥∥
op

≤ 2R2β

3M
+

√
2R2∥T∥opβ

M

≤ R2

(
2β

3M
+

√
2β

M

)
,

which completes the proof.

Let H and HM be RKHSs associate with kernels k and kM , respectively. Using Propo-
sition A.3 and Lemma A.1, we have the following proposition, which is essential in the
proof of Theorem 4.1.

Lemma A.2. For any δ ∈ (0, 1] and ξ > 0, if

M ≥ max

{
8

3

(
R

ξ

)2

, 32

(
R

ξ

)4
}
log

2R2

∥T∥opδ

holds, the following statement holds with probability at least 1− δ:
For any g ∈ H, there exists g̃ ∈ HM that satisfies

• ∥g − g̃∥L2(dρX ) ≤ ξ∥g∥H
• ∥g∥H ≥ ∥g̃∥HM

.

Also, for any g̃ ∈ HM , there exists g ∈ H that satisfies

• ∥g − g̃∥L2(dρX ) ≤ ξ∥g̃∥HM
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• ∥g∥H ≤ ∥g̃∥HM
.

Proof. We show the first part of the statement. The latter half can be shown in the same
manner.
For g ∈ H, set g̃ = T 1/2

M PKer(TM )⊥T −1/2PKer(Σ)⊥g ∈ HM . Then we have

∥g̃∥HM
= ∥PKer(TM )⊥T −1/2PKer(Σ)⊥g∥L2(dρX )

≤ ∥T −1/2PKer(Σ)⊥g∥L2(dρX )

= ∥PKer(Σ)⊥g∥H
≤ ∥g∥H.

Moreover, by Proposition A.4 and Lemma A.1, with probability at least 1− δ, we have

∥g − g̃∥L2(dρX ) = ∥PKer(Σ)⊥g − g̃∥L2(dρX ) (∵ Proposition A.3.1)

= ∥T 1/2h− T 1/2
M PKer(TM )⊥h∥L2(dρX )

= ∥T 1/2h− T 1/2
M h∥L2(dρX )

≤ ∥T 1/2 − T 1/2
M ∥op∥h∥L2(dρX )

≤ ∥T − TM∥
1/2
op ∥g∥H

≤

(
R2

(
2β

3M
+

√
2β

M

))1/2

∥g∥H

≤ R

((
2β

3M

)1/2

+

(
2β

M

)1/4
)
∥g∥H

where h = T −1/2PKer(Σ)⊥g ∈ L2(dρX ) and β = log 2R2

∥T∥opδ
.

Solving the equation max

{(
2β
3M

)1/2

,
(

2β
M

)1/4
}
≤ ξ

2R , we get a desired result.
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B

Interpolation Space

In this section, we introduce real interpolation of two Banach spaces.

Definition B.1 (Interpolation space [11, 59]). For given Banach spaces E and F such
that F ⊂ E and id : F → E is continuous, we define the K-functional of x ∈ E by

K(x, t)
def
= inf

y∈F
(∥x− y∥E + t∥y∥F ) , t > 0.

Then, the real interpolation space [E,F ]θ,r, where 0 < θ < 1 and 1 ≤ r ≤ ∞, is a Banach
space that consists of those x ∈ E with finite norm

∥x∥[E,F ]θ,r
def
=

{(∫∞
0

(
t−θK(x, t)

)r
t−1dt

) 1
r (r <∞)

supt>0 t
−θK(x, t) (r =∞).

Moreover, the limiting cases are defined by

[E,F ]0,∞
def
= E, [E,F ]1,∞

def
= F.

It is known that for all 0 < θ < 1 and 1 ≤ r ≤ r′ ≤ ∞, [E,F ]θ,r is continuously
embedded in [E,F ]θ,r′ , that is, there exists a constant C > 0 such that for any f ∈ [E,F ]θ,r

∥f∥[E,F ]θ,r′
≤ C∥f∥[E,F ]θ,r .

In analyses of kernel methods, the case where E = L2(dρX ) and F = H (RKHS) is usually
considered to characterize how difficult the target function f is to learn with functions in
H [59]. When r = 1, there is a useful relation about norms, which are used in the proof
of Theorem 4.2.

Proposition B.1 (Proposition 2.10 in [11]). For any f ∈ [E,F ]θ,1, there exists a constant
C > 0 such that

∥f∥[E,F ]θ,1 ≤ C∥f∥
1−θ
E ∥f∥θF .

Setting E = L2(dρX ) and F = H, the norm condition (Assumption 4.3)

∥f∥L∞(X ) ≤ C∥f∥1−p
L2(dρX )∥f∥

p
H

is reduced to the condition that [L2(dρX ),H]p,1 is continuously embedded to L∞(X ).
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C

Proofs in Chapter 2

In this section, we show the missing proofs in Chapter 2. They are essentially appeared
in [42].

Proof of Proposition 2.3
Proposition 2.3 (Proposition C in [42]). Suppose Assumption 2.1, 2.2 holds. Consider

Algorithm 2.2 with ηt = 2
λ(γ+t) and αt = 2(γ+t−1)

(2γ+T )(T+1) and assume assume ∥g1∥H ≤
(2γ1 + 1/λ)GR and η1 ≤ min{1/L, 1/2λ}. Then, it follows that

∥E[gT+1]− gλ∥2H ≤
2

λ

(
18G2R2

λ(2γ + T )
+

λγ(γ − 1)

2(2γ + T )(T + 1)
∥g1 − gλ∥2H

)
.

Proof. First, we show that the norm of Gλ(gt, Zt) can be uniformly bounded for all t in
this setting. By Assumption 2.1 and 2.2, we have the following bound on the stochastic
gradient of l in H:

∥∂ζ l(g(x), y)k(·, x)∥H ≤ GR.

Therefore, if ∥gt∥H ≥ 1
λGR, then

∥gt+1∥H = ∥gt − ηt∂ζ l(g(Xt), Yt)k(·, Xt)− ηtλgt∥H
≤ (1− ηtλ)∥gt∥H + ηtGR

≤ ∥gt∥H.

Otherwise, we have

∥gt+1∥H = ∥gt − ηt∂ζ l(g(Xt), Yt)k(·, Xt)− ηtλgt∥H
≤ ∥gt∥H + 2ηtGR

≤ ∥gt∥H + 2η1GR

From this, we can see that a generated sequence {gt}t=1,...,T+1 is contained in a close
ball centered at the origin with radius (2η1 + 1/λ)GR as long as an initial function g1 is
contained in this ball. Thus, the norm of the stochastic gradient Gλ(gt, Zt) is bounded as

∥Gλ(gt, Zt)∥H ≤ ∥∂ζ l(gt(Xt), Yt)k(·, Xt)∥H + λ∥gt∥H
≤ GR+ λ(2η1 + 1/λ)GR

≤ 3GR, (C.1)
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where the last inequality follows from the condition η1 ≤ 1/2λ.
By (C.1) and the strong convexity of Lλ, we have

E∥gt+1 − gλ∥2H = E∥gt − gλ∥2H − 2ηtE[⟨gt − gλ, Gλ(gt, Zt)⟩H] + η2tE∥Gλ(gt, Zt)∥2H
≤ E∥gt − gλ∥2H − 2ηtE[⟨gt − gλ,∇Lλ(gt)⟩H] + 9η2tG

2R2

≤ E∥gt − gλ∥2H − 2ηt

(
E[Lλ(gt)]− Lλ(gλ) +

λ

2
E∥gt − gλ∥2H

)
+ 9η2tG

2R2.

Thus we obtain

E[Lλ(gt)]− Lλ(gλ) ≤
1− ληt
2ηt

E∥gt − gλ∥2H −
1

2ηt
E∥gt+1 − gλ∥2H +

9ηtG
2R2

2

=
λ(γ + t− 2)

4
E∥gt − gλ∥2H −

λ(γ + t)

4t
E∥gt+1 − gλ∥2H +

9G2R2

λ(γ + t)
.

By multiplying γ + t− 1 and taking sum over t ∈ {1, . . . , T + 1}, we get

T+1∑
t=1

(γ + t− 1)(E[Lλ(gt)]− Lλ(gλ))

≤ λ

4

T+1∑
t=1

{(γ + t− 1)(γ + t− 2)E∥gt − gλ∥2H − (γ + t)(γ + t− 1)E∥gt+1 − gλ∥2H}

+
9G2R2(T + 1)

λ

≤ λ

4
γ(γ − 1)∥g1 − gλ∥2H +

9G2R2(T + 1)

λ
.

Dividing by (2γ + T )(T + 1)/2 and applying Jensen’s inequality, we obtain

E
[
Lλ(gT+1)

]
− Lλ(gλ) = E

[
Lλ

(
T+1∑
t=1

2(γ + t− 1)

(2γ + T )(T + 1)
gt

)]
− Lλ(gλ)

≤
T+1∑
t=1

2(γ + t− 1)

(2γ + T )(T + 1)
E [Lλ (gt)]− Lλ(gλ)

≤ λγ(γ − 1)

2(2γ + T )(T + 1)
∥g1 − gλ∥2H +

18G2R2

λ(2γ + T )
.

Using the strong convexity of Lλ and applying Jensen’s inequality again, we get

∥E[gT+1]− gλ∥2H ≤
2

λ

(
Lλ(E[gT+1])− Lλ(gλ)

)
≤ 2

λ

(
E
[
Lλ(gT+1)

]
− Lλ(gλ)

)
and obtain a desired bound.



53

Proof of Proposition 2.4
Proposition 2.4 (Proposition 2 and D in [42]). Suppose Assumption 2.1, 2.2 holds.

Consider Algorithm 2.2 with ηt = 2
λ(γ+t) and αt = 2(γ+t−1)

(2γ+T )(T+1) and assume ∥g1∥H ≤
(2γ1 + 1/λ)GR and η1 ≤ min{1/L, 1/2λ}. Then, it follows that

P
[∥∥gT+1 − E[gT+1]

∥∥
H ≥ ϵ

]
≤ 2 exp

(
− λ

2(2γ + T )

26 · 32G2R2
ϵ2
)
.

Proof. From (C.1) and the fact that gt = gtt , we have

∥gt+1 − gtt+1∥H = ηt∥Gλ(gt, Zt)−Gλ(gt, Z
′
t)∥H ≤ 6ηtGR. (C.2)

For simplicity, let l(g, z) denote l(g(x), y) for z = (x, y) and ∂gl(g, z) denote the gradient
of l(g, z) with respect to g ∈ H. Then Assumption 2.1 and Theorem 2.1.5 in [40] yields
that for any g, g′ ∈ H,

⟨∂gl(g, z)− ∂gl(g′, z), g − g′⟩H ≥
1

LR2
∥∂gl(g, z)− ∂gl(g′, z)∥2H.

Thus we have that for s ≥ t+ 1,

∥gs+1 − gts+1∥2H = (1− ηsλ)2∥gs − gts∥2H − 2ηs(1− ηsλ)⟨∂gl(gs, Zs)− ∂gl(gts, Zs), gs − gts⟩H

+ η2s∥∂gl(gs, Zs)− ∂gl(gts, Zs)∥2H

≤ (1− ηsλ)2∥gs − gts∥2H − ηs
(

1

LR2
− ηs

)
∥∂gl(gs, Zs)− ∂gl(gts, Zs)∥2H

≤ (1− ηsλ)2∥gs − gts∥2H,

where the last inequality follows from the condition ηs ≤ η1 ≤ 1/LR2. By substituting
ηs =

2
λ(γ+s) and (C.2), we have

∥gs+1 − gts+1∥H ≤
s∏

r=t+1

γ + r − 2

γ + r
∥gt+1 − gtt+1∥H

≤ 12GR

λ(γ + s)
.

Recall that gt+1 = (1− θt)gt + θtgt+1, where θt =
2(γ+t)

(t+1)(2γ+t) . Then we have

∥gT+1 − gtT+1∥H ≤ (1− θT )∥gT − gtT ∥H + θt∥gT+1 − gtT+1∥H.

≤
T∑

s=t

{
T∏

r=s+1

(1− θr)

}
θs∥gs+1 − gts+1∥H

≤
T∑

s=t

(2γ + s)

(T + 1)(2γ + T )

12GR

λ(γ + s)

≤
T∑

s=t

24GR

λ(T + 1)(2γ + T )

≤ 24GR(T − t+ 1)

λ(T + 1)(2γ + T )
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Finally, we obtain

T+1∑
t=1

∥Dt∥2∞ ≤
242G2R2

λ2(T + 1)2(2γ + T )2

T+1∑
t=1

(T − t+ 1)2

≤ 242G2R2

λ2(T + 1)2(2γ + T )2
T (T + 1)(2T + 1)

6

≤ 24 · 4G2R2(2T + 1)

λ2(2γ + T )2

≤ 288G2R2

λ2(2γ + T )
.

By substituting c2T = 288G2R2

λ2(2γ+T ) in Lemma 2.1, we obtain a desired bound.
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D

Proofs in Chapter 3

Proof of Theorem 3.1
The following lemma shows that the low noise condition on ρ(1|X) yields that on g∗(X)
with the use of the Lipschitz continuity of h−1

∗ .

Lemma D.1. Under Assumption 3.3 and 3.5, there exists C4 > 0 such that the following
inequality holds for all δ > 0:

P [|g∗(X)| ≤ δ] ≤ C4δ
α

Proof.

P [|g∗(X)| ≤ δ] ≤ P
[
|h−1

∗ (g∗(X))− h−1
∗ (0)| ≤ L′δ

]
= P [|ρ(Y = 1|x)− 1/2| ≤ L′δ]

≤ C2L
′αδα,

and setting C4 = C2L
′α, we get a desired result.

Using the above lemma, the fast convergence of expected classification errors is shown.

Theorem 3.1. Suppose Assumption 3.1-3.6 holds. Consider Algorithm 4.1 with λ =(
288C−2

2 G2R4
) 1

2+2κ T− 1
2+2κ , ηt =

2
λ(γ+t) and αt =

2(γ+t−1)
(2γ+T )(T+1) where γ is a positive value

such that ∥g1∥H ≤ (2η1+1/λ)GR and η1 ≤ min{1/LR2, 1/2λ}. Then there exists constant
C > 0 such that the following inequality holds:

E
[
R(gT+1)

]
−R(g∗) ≤ CT− (α+1)κ

2+2κ .

Proof. For simplicity, we denote the conditional label probability ρ(1|X) by η(X) and the
training samples by z1:T = {(x1, y1), . . . , (xT , yT )}. For given δ > 0, choose λ > 0 so that

∥gλ − g∗∥L∞(dρX ) ≤ δ. (D.1)

Consider the sets Aj ⊂ X , j = 0, 1, . . ., defined as

A0 = {x ∈ X | sgn(g∗(x))gλ(x) ≤ δ} ,
Aj =

{
x ∈ X

∣∣ 2j−1δ < sgn(g∗(x))gλ(x) ≤ 2jδ
}

for j ≥ 1.

Then we have the following inequality:

P
[
sgn(g∗(X))gλ(X) ≤ 2jδ

]
≤ P

[
|gλ(X)| ≤ 2jδ

]
≤ P

[
|g∗(X)| ≤ 2j+1δ

]
≤ 2α(j+1)C4δ

α, (D.2)
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where the first inequality follows from the fact that we have |gλ(X)| ≤ δ in the case of
sgn(g∗(X))gλ(X) < 0 because of (D.1), and the last inequality follows from Assumption
3.5 and Lemma A.2. Also, we have

X ∈ Aj =⇒ |g∗(X)| ≤ 2j+1δ =⇒
∣∣∣∣η(X)− 1

2

∣∣∣∣ ≤ 2j+1L′δ (D.3)

from Assumption 3.3. Now let us fix T > 0 such that

max

{
36L2R2

λ2(2γ + T )
,
γ(γ − 1)∥g1 − gλ∥2H
(2γ + T )(T + 1)

}
≤ δ2

8R2
, (D.4)

then we obtain ∥∥E[gT+1]− gλ
∥∥
L∞(dρX )

≤ R∥E[gT+1]− gλ∥H ≤
δ

2

from Proposition 2.3 and

P
[
∥gT+1 − gλ∥L∞(dρX ) ≥ 2j−1δ

]
≤ P

[
∥gT+1 − gλ∥H ≥ 2j−1δ/R

]
≤ P

[
∥gT+1 − E[gT+1]∥H ≥ 2j−2δ/R

]
≤ 2 exp

(
−22j−10λ2(2γ + T )

32L2R4
δ2
)

(D.5)

from Proposition 2.4. Moreover we have

E
[
R(gT+1)−R(g∗)

]
= EX,z1:T

[
|2η(X)− 1| · 1sgn(gT+1(X))̸=sgn(g∗(X))

]
= EX,z1:T

∞∑
j=0

[
|2η(X)− 1| · 1sgn(gT+1(X))̸=sgn(g∗(X)) · 1Aj

]
≤ EX,z1:T [|2η(X)− 1| · 1A0

] + EX,z1:T

∞∑
j=1

[
|2η(X)− 1| · 1sgn(gT+1(X))̸=sgn(g∗(X)) · 1Aj

]
≤ 4L′δ · 2αC4δ

α

+

∞∑
j=1

2j+2L′δEX

[
Ez1:T

[
1sgn(gT+1(X)) ̸=sgn(g∗(X)) · 12j−1δ<sgn(g∗(X))gλ(X)

]
1sgn(g∗(X))gλ(X)≤2jδ

]

≤ 2α+2L′C4δ
α+1 +

∞∑
j=1

2j+3L′δ exp

(
−22j−10λ2(2γ + T )

32L2R4
δ2
)
· 2α(j+1)C4δ

α (∵ (D.2), (D.3), (D.5))

= 2α+2L′C4δ
α+1

1 +

∞∑
j=1

2(α+1)j+1 exp

(
−22j−10λ2(2γ + T )

32L2R4
δ2
) .

Now we set λ and δ as

λ = C5T
− 1

2+2κ , δ = C6T
− κ

2+2κ ,
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where

C5 =
(
288C−2

2 L2R4
) 1

2+2κ ,

C6 = max

{(
288κC2

2L
2κR4κ

) 1
2+2κ ,

4γ(γ − 1)R2 (∥g1∥H + ∥g∗∥H)
2

2γ + 1

}
.

Then we can check that it satisfies the conditions (D.1) and (D.4) using Assumption 3.6.
Indeed for (D.1) we have

∥gλ − g∗∥L∞(dρ(X ) ≤ C2λ
κ (∵ Assumption 3.6)

= C2C
κ
5 T

− κ
2+2κ

≤ δ,

and for (D.4), we have

36L2R2

λ2(2γ + T )
≤ 36L2R2C−2

5 T− 2κ
2+2κ

≤ 8−1C2
6R

−2T− κ
2+2κ

=
δ2

8R2

and

γ(γ − 1)∥g1 − gλ∥2H
(2γ + T )(T + 1)

≤ γ(γ − 1)(∥g1∥H + ∥g∗∥H)2

(2γ + 1)T

≤ γ(γ − 1)(∥g1∥H + ∥g∗∥H)2(C−1
6 δ)

2+2κ
κ

2γ + 1

≤ δ2

8R2
.

By substituting them, we obtain

E
[
R(gT+1)−R(g∗)

]
≤ 2α+2L′C4C

α+1
6 T− (α+1)κ

2+2κ1 +

∞∑
j=1

2(α+1)j+1 exp

(
−22j−10C2

5C
2
6 (2γ + 1)

32L2R4

)
for any T ≥ 1. Since the last sum converges, we get a desired result.

Proof of Theorem 3.2
Theorem 3.2. Suppose Assumption 3.2, 3.7 and 3.8 holds. Then it holds that

∥gλ − g∗∥L∞(dρX ) ≤ 2pC3∥g∗∥H
(

λ

µ(R∥g∗∥H)

) 1−p
2

.

Thus Assumption 3.6 is satisfied with κ = 1−p
2 .
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Proof. By definition of gλ, we have

L(g∗) +
λ

2
∥g∗∥2H ≥ L(gλ) +

λ

2
∥gλ∥2H, (D.6)

∥g∗∥H ≥ ∥gλ∥H. (D.7)

In addition, it holds that

g∗(x) ≤ R∥g∗∥H, (D.8)

gλ(x) ≤ R∥gλ∥H ≤ R∥g∗∥H

for all x ∈ X . Furthermore, since g∗ attains infimum of L among all measurable functions,
we have ∫

Y
∂ζ l(g∗(·), y)dρ(y|·) ≡ 0, (D.9)

where ∂ζ denotes a partial derivative of l with respect to the first variable.
Then we obtain

∥gλ − g∗∥2L2(dρX ) =

∫
X
|gλ(x)− g∗(x)|2 dρX (x)

≤
∫
X×Y

2

µ(R∥g∗∥H)
{l(gλ(x), y)− l(g∗(x), y)

− ∂ζ l(g∗(x), y)(gλ(x)− g∗(x))}dρ(x, y) (∵ (D.8) and Assumption 3.7)

=

∫
X×Y

2

µ(R∥g∗∥H)
{l(gλ(x), y)− l(g∗(x), y)} dρ(x, y) (∵ (D.9))

=
2

µ(R∥g∗∥H)
(L(gλ)− L(g∗))

≤ λ

µ(R∥g∗∥H)

(
∥g∗∥2H − ∥gλ∥2H

)
(∵ (D.6))

≤ λ

µ(R∥g∗∥H)
∥g∗∥2H (∵ (D.7)).

Finally, applying Assumption 3.8 we have

∥gλ − g∗∥L∞(dρX ) ≤ C3∥gλ − g∗∥pH∥gλ − g∗∥
1−p
L2(dρX )

≤ 2pC3

(
λ

µ(R∥g∗∥H)

) 1−p
2

∥g∗∥H.
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E

Proofs in Chapter 4

Proof of Theorem 4.1
In this section, we give the complete statement and proof of Theorem 4.1.

Theorem 4.1. Define ξ > 0 such that

ξ = min

{(
ϵ

2p+1C(δ)∥g∗∥H

)1/1−p

,
λϵ2

24 · 3R2L∥g∗∥H
,

(
λ3ϵ4

27 · 32R4L2L(g∗)

)1/2

,

(
λ3ϵ4

27 · 32R4L3∥g∗∥H

)1/3
}
.

Then a number of random features M which satisfies

M ≥ max

{
8

3

(
R

ξ

)2

, 32

(
R

ξ

)4
}
log

2R2

∥T∥opδ

is enough to guarantee, with probability at least 1− 2δ, that

∥gλ − gM,λ∥L∞(dρX ) ≤ ϵ.

Proof. By Lemma A.2, for given ξ > 0, if we have a number of feature M such that

M ≥ max

{
8

3

(
R

ξ

)2

, 32

(
R

ξ

)4
}
log

2R2

∥T∥opδ
,

we can take g̃λ ∈ HM , g̃M,λ ∈ H which satisfy the following conditions:

∥gλ∥H ≥ ∥g̃λ∥HM
(E.1)

∥gM,λ∥HM
≥ ∥g̃M,λ∥H (E.2)

∥g̃M,λ − gM,λ∥L2(dρX ) ≤ ξ∥gM,λ∥HM
(E.3)

∥g̃λ − gλ∥L2(dρX ) ≤ ξ∥gλ∥H (E.4)

By λ-strong convexity with respect to RKHS norm, we have

L(gλ) +
λ

2
∥gλ∥2H +

λ

2
∥gλ − g̃M,λ∥2H ≤ L(g̃M,λ) +

λ

2
∥g̃M,λ∥2H (E.5)

L(gM,λ) +
λ

2
∥gM,λ∥2HM

+
λ

2
∥gM,λ − g̃λ∥2HM

≤ L(g̃λ) +
λ

2
∥g̃λ∥2HM

. (E.6)
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Fig. E.1: A schematic drawing of the proof of Theorem 4.1.

In addition, by L-Lipschitzness of L with respect to L2(dρX ) norm in Assumption 4.1 and
(E.3)(E.4), we have

L(g̃M,λ) ≤ L(gM,λ) + L∥g̃M,λ − gM,λ∥L2(dρX )

≤ L(gM,λ) + Lξ∥gM,λ∥HM
(E.7)

L(g̃λ) ≤ L(gλ) + L∥g̃λ − gλ∥L2(dρX )

≤ L(gλ) + Lξ∥gλ∥H (E.8)

By inequalities (E.5)(E.6)(E.7)(E.8) and (E.1)(E.2), we have

L(gλ) +
λ

2
∥gλ∥2H +

λ

2

(
∥gλ − g̃M,λ∥2H + ∥gM,λ − g̃λ∥2HM

)
≤ L(g̃M,λ) +

λ

2
∥g̃M,λ∥2H +

λ

2
∥gM,λ − g̃λ∥2HM

≤ L(gM,λ) + Lξ∥gM,λ∥HM
+
λ

2
∥gM,λ∥2HM

+
λ

2
∥gM,λ − g̃λ∥2HM

≤ L(g̃λ) +
λ

2
∥g̃λ∥2HM

+ Lξ∥gM,λ∥HM

≤ L(gλ) +
λ

2
∥gλ∥2H + Lξ (∥gλ∥H + ∥gM,λ∥HM

) .

Thus we have

∥gλ − g̃M,λ∥2H + ∥gM,λ − g̃λ∥2HM
≤ 2Lξ

λ
(∥gλ∥H + ∥gM,λ∥HM

) . (E.9)

In addition, by (E.6) and (E.8), we have

λ

2
∥gM,λ∥2HM

≤ L(g̃λ) +
λ

2
∥g̃λ∥2HM

≤ L(gλ) + Lξ∥gλ∥H +
λ

2
∥gλ∥2H. (E.10)
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Combining (E.9) and (E.10), we obtain

∥gλ − g̃M,λ∥2H + ∥gM,λ − g̃λ∥2HM
≤ 2Lξ

λ

(
∥gλ∥H +

(
2

λ
L(gλ) +

2Lξ

λ
∥gλ∥H + ∥gλ∥2H

)1/2
)

≤ 2Lξ

λ

(
∥g∗∥H +

(
2

λ
L(g∗) +

2Lξ

λ
∥g∗∥H + ∥g∗∥2H

)1/2
)

≤ 2Lξ

λ

(
2∥g∗∥H +

(
2

λ
L(g∗)

)1/2

+

(
2Lξ

λ
∥g∗∥H

)1/2
)
.

In the second inequality, we used ∥g∗∥H ≥ ∥gλ∥H and L(g∗)+ λ
2 ∥g∗∥

2
H ≥ L(gλ)+ λ

2 ∥gλ∥
2
H.

In the third inequality, we used
√
a+
√
b ≥
√
a+ b for a, b > 0. Then by Assumption 4.2,

we obtain

∥gM,λ − g̃λ∥L∞(dρX ) ≤ Rmax

{(
12Lξ

λ
∥g∗∥H

)1/2

,

(
72L2ξ2

λ3
L(g∗)

)1/4

,

(
72L3ξ3

λ3
∥g∗∥H

)1/4
}
. (E.11)

On the other hand, by Assumption 4.3, we have

∥gλ − g̃λ∥L∞(dρX ) ≤ C(δ)∥gλ − g̃λ∥pH+
M

∥gλ − g̃λ∥1−p
L2(dρX )

≤ C(δ)(∥gλ∥H + ∥g̃λ∥HM
)p(ξ∥gλ∥H)1−p

≤ 2pC(δ)ξ1−p∥g∗∥H (E.12)

with probability at least 1− δ. In the second inequality, we used the fact that

∥g∥H+
M

= inf{∥g1∥H + ∥g2∥HM
| g = g1 + g2, g1 ∈ H, g2 ∈ HM}

from Proposition A.1. Combining (E.11) and (E.12), we have

∥gλ − gM,λ∥L∞(dρX ) ≤ ∥gλ − g̃λ∥L∞(dρX ) + ∥g̃λ − gM,λ∥L∞(dρX )

≤ max

{
2p+1C(δ)∥g∗∥Hξ1−p, R

(
24 · 3Lξ

λ
∥g∗∥H

)1/2

,

R

(
27 · 32L2ξ2

λ3
L(g∗)

)1/4

, R

(
27 · 32L3ξ3

λ3
∥g∗∥H

)1/4
}
.

As a result, define ξ > 0 which satisfies

ξ = min

{(
ϵ

2p+1C(δ)∥g∗∥H

)1/1−p

,
λϵ2

24 · 3R2L∥g∗∥H
,

(
λ3ϵ4

27 · 32R4L2L(g∗)

)1/2

,

(
λ3ϵ4

27 · 32R4L3∥g∗∥H

)1/3
}
,

then we have ∥gλ − gM,λ∥L∞(dρX ) ≤ ϵ with probability at least 1− 2δ.
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Proof of Theorem 4.2
The following theorem shows that if k is a Gaussian kernel and kM is its random Fourier
features approximation, then the norm condition in the assumption is satisfied. The proof
is inspired by the analysis of Theorem 4.48 in [58].

Theorem 4.2. Assume supp(ρX ) ⊂ Rd is a bounded set and ρX has a density with respect
to Lebesgue measure which is uniformly bounded away from 0 and ∞ on supp(ρX ). Let k
be a Gaussian kernel and H be its RKHS, then for any m ≥ d/2, there exists a constant
Cm,d > 0 such that

∥f∥L∞(dρX ) ≤ Cm,d∥f∥
d/2m
H ∥f∥1−d/2m

L2(dρX )

for any f ∈ H. Also, for any M ≥ 1, let kM be a random Fourier features approximation
of k with M features and H+

M be a RKHS of k+ kM . Then with probability at least 1− δ
with respect to a sampling of features,

∥f∥L∞(dρX ) ≤ Cm,d

(
1 +

1

δ

)d/4m

∥f∥d/2mH+
M

∥f∥1−d/2m
L2(dρX )

for any f ∈ H+
M .

Proof. For notational simplicity, we denote supp(ρX ) by X ′. From the boundedness of X ′

and the condition on ρX , the following relation holds for any f ∈ L∞(dρX ):

∥f∥L∞(dρX ) = ∥f∥L∞(X ′) (E.13)

∥f∥L2(dρX ) ≥ C1∥f∥L2(X ′), (E.14)

where C1 > 0 is a constant. From the discussion after Theorem 4.2, for any f ∈
Wm(X ′) (m ≥ d/2) there exists a constant C2 > 0 such that the following inequality
holds:

∥f∥L∞(X ′) ≤ C2∥f∥
d/2m
Wm(X ′)∥f∥

1−d/2m
L2(X ′) . (E.15)

Here Wm(X ′) is Sobolev space with order m defined as follows:

Wm(X ′) =
{
f ∈ L2(X ′)

∣∣∣ ∂(α)f ∈ L2(X ′) exists for all α ∈ Nd with |α| ≤ m
}
,

where ∂(α) is the α-th weak derivative for a multi-index α = (α(1), . . . , α(d)) ∈ Nd with

|α| =
∑d

i=1 α
(i).

Combining (E.13), (E.14) and (E.15), we have

∥f∥L∞(dρX ) ≤ C∥f∥
d/2m
Wm(X ′)∥f∥

1−d/2m
L2(dρX ), (E.16)

where C > 0 is a constant. So it suffices to show that H and H+
M can be continuously

embedded in Wm(X ′). For H, it can be shown in the same manner as Theorem 4.48 in
[58]. For H+

M , we first define a spectral measure of the kernel function k + kM as

τ+(ω) =
1

M

M∑
i=1

δ(ω − ωi) + τ(ω),
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where δ is a Dirac measure on Ω. Then a kernel function k + kM can be written as

(k + kM )(x, x′) =

∫
Ω

φ(x, ω)φ(x′, ω)dτ+(ω),

and from [9], for any f ∈ H+
M , there exists g ∈ L2(dτ+) such that

f(x) =

∫
Ω

g(ω)φ(x, ω)dτ+(ω),

∥f∥H+
M

= ∥g∥L2(dτ+).

Let us fix a multi-index α = (α(1), . . . , α(d)) ∈ Nd and |α| = m. For α ∈ Nd, we write

∂α = ∂α
(1)

1 · · · ∂α(d)

d . We then have

∥∂αf∥2L2(X ′) =

∫
X ′

(
∂αx

∫
Ω

g(ω)φ(x, ω)dτ+(ω)

)2

dx

≤
∫
X ′

(∫
Ω

|g(ω)|∂αxφ(x, ω)dτ+(ω)
)2

dx

≤ ∥g∥2L2(dτ+)

∫
X ′

∫
Ω

|∂αxφ(x, ω)|2dτ+(ω)dx.

Because we consider φ as a random Fourier feature, Ω = Rd and

φ(x, ω) = C ′eiω
⊤x,

∂αxφ(x, ω) = ωαC ′eiω
⊤x

where C ′ > 0 is a normalization constant and ωα =
∏d

i=1 ω
(i)αi

for ω = (ω(1), . . . , ω(d)) ∈
Rd and α = (α(1), . . . , α(d)) ∈ Nd. So we have

∥∂αf∥2L2(X ′) ≤ ∥g∥
2
L2(dτ+)

∫
X ′
C ′2

∫
Ω

ω2αdτ+(ω)dx

≤ C ′2vol(X ′)∥f∥2H+
M

(
Eω∼τ

[
ω2α

]
+

1

M

M∑
i=1

ω2α
i

)
.

We note that because τ is Gaussian, Eω∼τ

[
ω2α

]
is finite for any α ∈ Nd. Because ωi ∼ τ

and ω2α
i is non negative, from Markov’s inequality we have

1

M

M∑
i=1

ω2α
i ≤

1

δ
Eω∼τ

[
ω2α

]
with probability at least 1− δ. As a result, we have

∥∂αf∥2L2(X ′) ≤
(
1 +

1

δ

)
C ′2vol(X ′)∥f∥2H+

M

Eω∼τ

[
ω2α

]
.

So we can compute Sobolev norms of f as follows:

∥f∥2Wm(X ′) =
∑

|α|≤m

∥∂αf∥2L2(X ′)

≤
(
1 +

1

δ

)
C ′2vol(X ′)∥f∥2H+

M

∑
|α|≤m

Eω∼τ

[
ω2α

]
. (E.17)
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Substitute (E.17) to (E.16) and define Cm,d = C
(
C ′2vol(X ′)

∑
|α|≤m Eω∼τ

[
ω2α

])d/4m
,

we get a desired result.

Remark. We note that the assumption that k is Gaussian is only used to derive
Eω∼τ

[
ω2α

]
is finite for all α ∈ Nd. This means that if ψ(x − y) = k(x − y) belongs to

Schwartz class (a space of rapidly decreasing function) [65], its Fourier transform τ also
belongs to this class, thus the above finite moment property is satisfied.

Proof of Theorem 4.3
In this section, we provide the complete statement and the proof of Theorem 4.3. First,
we provide a useful proposition which is appeared in [42]. this result suggests that there
exists a sufficiently small λ > 0 such that gλ is also the Bayes classifier.

Proposition E.1 (Proposition A in [42]). Suppose Assumption 4.3, 4.5, 4.6, 4.7 hold.
Then, there exists λ > 0 such that ∥gλ − g∗∥L∞(dρX ) ≤ m(δ)/2.

Our main result about the exponential convergence of the expected classification error
is shown as follows.

Theorem 4.3. Suppose Assumptions 4.1-4.7 holds. There exists a sufficiently small λ > 0
such that the following statement holds:
Taking the number of random features M that satisfies

M ≥ max

{
8

3

(
R

ξ

)2

, 32

(
R

ξ

)4
}
log

2R2

∥T∥opδ
(E.18)

where ξ > 0 is defined as below:

ξ = min

{(
m(δ)

2p+3C(δ′)∥g∗∥H

)1/1−p

,
λm2(δ)

28 · 3R2G∥g∗∥H
,

(
λ3m4(δ)

215 · 32R4G2L(g∗)

)1/2

,

(
λ3m4(δ)

215 · 32R4G3∥g∗∥H

)1/3
}
.

Consider Algorithm 4.1 with ηt =
2

λ(γ+t) and αt =
2(γ+t−1)

(2γ+T )(T+1) where γ is a positive value

such that ∥g1∥HM
≤ (2η1 + 1/λ)GR and η1 ≤ min{1/L, 1/2λ}. Then, with probability

1− 2δ′, for sufficiently large T such that

max

{
36G2R2

λ2(2γ + T )
,
γ(γ − 1)∥g1 − gM,λ∥2HM

(2γ + T )(T + 1)

}
≤ m2(δ)

64R2
,

we have the following inequality for any t > T :

E
[
R(gT+1)−R(E[Y |x])

]
≤ 2 exp

(
−λ

2(2γ + t)m2(δ)

212 · 9G2R4

)
.

Proof. Fix λ > 0 satisfying the condition in Proposition E.1. From Theorem 4.1, if we set
a number of features M satisfying (E.18), we have

∥gM,λ − g∗∥L∞(dρX ) ≤ ∥gM,λ − gλ∥L∞(dρX ) + ∥gλ − g∗∥L∞(dρX )

≤ m(δ)

4
+
m(δ)

2
=

3m(δ)

4
.
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Fig. E.2: A schematic drawing of the proof of Theorem 4.3;
We can take a ball B′ around gM,λ in which all hypotheses are the Bayes classifiers if gM,λ

is sufficiently close to g∗.

Then sgn(g(X)) = sgn(g∗(X)) almost surely for any g ∈ HM satisfying ∥g − gM,λ∥HM
≤

m(δ)/4R, since

∥g − g∗∥L∞(dρX ) ≤ ∥g − gM,λ∥L∞(dρX ) + ∥gM,λ − g∗∥L∞(dρX )

≤ R∥g − gM,λ∥HM
+ ∥gM,λ − g∗∥L∞(dρX )

≤ m(δ)

4
+

3m(δ)

4
= m(δ)

and |g∗(X)| ≥ m(δ) almost surely. In other words, g is also the Bayes classifier of R(g).
Assume

∥E[gT+1]− gM,λ∥HM
≤ m(δ)

8R
. (E.19)

Then, substituting ϵ = m(δ)/8R in Proposition 2.4, we have

∥∥gT+1 − gM,λ

∥∥
HM
≤
∥∥gT+1 − E[gT+1]

∥∥
HM

+ ∥E[gT+1]− gM,λ∥HM
≤ m(δ)

4R

with probability at least 1 − 2 exp
(
−λ2(2γ+T )m2(δ)

212·32G2R4

)
. In other words, gT+1 is also the

Bayes classifier with same probability. By definition of the expected classification error,
we have

E[R(gT+1)]−R(E[Y |x]) ≤ 1− 2 exp

(
−λ

2(2γ + T )m2(δ)

212 · 32G2R4

)
.

Finally, to satisfy (E.19), the required number of iteration T is obtained by Proposition
2.3, which completes the proof.


